Properties

Label 2940.2.cq
Level $2940$
Weight $2$
Character orbit 2940.cq
Rep. character $\chi_{2940}(13,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $672$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.cq (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 245 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2940, [\chi])\).

Total New Old
Modular forms 8208 672 7536
Cusp forms 7920 672 7248
Eisenstein series 288 0 288

Trace form

\( 672 q - 16 q^{11} - 20 q^{15} + 28 q^{17} - 8 q^{21} - 16 q^{23} - 8 q^{25} - 16 q^{35} - 24 q^{37} - 56 q^{41} - 40 q^{43} - 84 q^{47} - 40 q^{51} + 84 q^{55} - 56 q^{61} + 72 q^{65} + 32 q^{67} + 16 q^{71}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2940, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2940, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2940, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1470, [\chi])\)\(^{\oplus 2}\)