Properties

Label 29120.2.a.bv
Level $29120$
Weight $2$
Character orbit 29120.a
Self dual yes
Analytic conductor $232.524$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [29120,2,Mod(1,29120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("29120.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(29120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 29120 = 2^{6} \cdot 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,1,0,-1,0,-2,0,-3,0,-1,0,1,0,-6,0,2,0,-1,0,3,0,1,0,-5, 0,6,0,7,0,-3,0,-1,0,-5,0,-1,0,9,0,2,0,-2,0,9,0,1,0,-6,0,0,0,-3,0,2,0,0, 0,13,0,2,0,-1,0,-13,0,3,0,-12,0,-13,0,1,0,3,0,-5,0,1,0,6,0,-6,0,6,0,18, 0,1,0,7,0,2,0,5,0,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(232.524370686\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + q^{5} - q^{7} - 2 q^{9} - 3 q^{11} - q^{13} + q^{15} - 6 q^{17} + 2 q^{19} - q^{21} + 3 q^{23} + q^{25} - 5 q^{27} + 6 q^{29} + 7 q^{31} - 3 q^{33} - q^{35} - 5 q^{37} - q^{39} + 9 q^{41}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.