Properties

Label 2912.2.fe
Level $2912$
Weight $2$
Character orbit 2912.fe
Rep. character $\chi_{2912}(145,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $432$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.fe (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 728 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 1856 464 1392
Cusp forms 1728 432 1296
Eisenstein series 128 32 96

Trace form

\( 432 q + 8 q^{7} - 196 q^{9} + 28 q^{15} - 24 q^{17} + 12 q^{31} - 12 q^{33} - 20 q^{39} + 12 q^{47} + 36 q^{49} + 4 q^{57} - 32 q^{63} - 4 q^{65} + 48 q^{71} - 12 q^{73} + 8 q^{79} - 136 q^{81} - 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 3}\)