Properties

Label 2912.2.ei
Level $2912$
Weight $2$
Character orbit 2912.ei
Rep. character $\chi_{2912}(99,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $1344$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.ei (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 416 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 1808 1344 464
Cusp forms 1776 1344 432
Eisenstein series 32 0 32

Trace form

\( 1344 q + 24 q^{6} - 48 q^{12} + 32 q^{22} - 64 q^{24} - 32 q^{30} - 40 q^{34} - 48 q^{39} - 64 q^{43} + 64 q^{46} + 1344 q^{49} - 64 q^{50} + 64 q^{55} - 72 q^{58} + 48 q^{59} + 48 q^{60} + 48 q^{68} - 48 q^{70}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)