Properties

Label 2912.2.cz
Level $2912$
Weight $2$
Character orbit 2912.cz
Rep. character $\chi_{2912}(753,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $216$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.cz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 728 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 928 232 696
Cusp forms 864 216 648
Eisenstein series 64 16 48

Trace form

\( 216 q + 96 q^{9} - 4 q^{17} + 4 q^{23} - 96 q^{25} - 4 q^{39} - 24 q^{49} + 40 q^{55} - 12 q^{65} + 4 q^{79} - 68 q^{81} - 56 q^{87} - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 3}\)