Properties

Label 29040.2.a.bp
Level $29040$
Weight $2$
Character orbit 29040.a
Self dual yes
Analytic conductor $231.886$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [29040,2,Mod(1,29040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("29040.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(29040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 29040 = 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1,0,1,0,2,0,1,0,0,0,-6,0,-1,0,-2,0,-4,0,-2,0,0,0,1,0,-1, 0,0,0,0,0,0,0,2,0,6,0,6,0,0,0,2,0,1,0,-8,0,-3,0,2,0,2,0,0,0,4,0,-4,0,12, 0,2,0,-6,0,-4,0,0,0,0,0,14,0,-1,0,0,0,4,0,1,0,14,0,-2,0,0,0,6,0,-12,0, 0,0,-4,0,-2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(231.885567470\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + q^{5} + 2 q^{7} + q^{9} - 6 q^{13} - q^{15} - 2 q^{17} - 4 q^{19} - 2 q^{21} + q^{25} - q^{27} + 2 q^{35} + 6 q^{37} + 6 q^{39} + 2 q^{43} + q^{45} - 8 q^{47} - 3 q^{49} + 2 q^{51} + 2 q^{53}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.