Defining parameters
Level: | \( N \) | \(=\) | \( 28900 = 2^{2} \cdot 5^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 28900.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 64 \) | ||
Sturm bound: | \(9180\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(28900))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4752 | 429 | 4323 |
Cusp forms | 4429 | 429 | 4000 |
Eisenstein series | 323 | 0 | 323 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(594\) | \(0\) | \(594\) | \(541\) | \(0\) | \(541\) | \(53\) | \(0\) | \(53\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(606\) | \(0\) | \(606\) | \(552\) | \(0\) | \(552\) | \(54\) | \(0\) | \(54\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(603\) | \(0\) | \(603\) | \(549\) | \(0\) | \(549\) | \(54\) | \(0\) | \(54\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(599\) | \(0\) | \(599\) | \(545\) | \(0\) | \(545\) | \(54\) | \(0\) | \(54\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(594\) | \(103\) | \(491\) | \(567\) | \(103\) | \(464\) | \(27\) | \(0\) | \(27\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(582\) | \(100\) | \(482\) | \(555\) | \(100\) | \(455\) | \(27\) | \(0\) | \(27\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(585\) | \(109\) | \(476\) | \(558\) | \(109\) | \(449\) | \(27\) | \(0\) | \(27\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(589\) | \(117\) | \(472\) | \(562\) | \(117\) | \(445\) | \(27\) | \(0\) | \(27\) | |||
Plus space | \(+\) | \(2360\) | \(209\) | \(2151\) | \(2199\) | \(209\) | \(1990\) | \(161\) | \(0\) | \(161\) | |||||
Minus space | \(-\) | \(2392\) | \(220\) | \(2172\) | \(2230\) | \(220\) | \(2010\) | \(162\) | \(0\) | \(162\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(28900))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 17 | |||||||
28900.2.a.a | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | \(q-2q^{3}-2q^{7}+q^{9}+5q^{11}-6q^{13}+\cdots\) | |
28900.2.a.b | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | \(q-2q^{3}+2q^{7}+q^{9}-2q^{13}-4q^{19}+\cdots\) | |
28900.2.a.c | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}-2q^{9}-q^{13}-4q^{19}+\cdots\) | |
28900.2.a.d | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(3\) | $-$ | $-$ | $+$ | \(q-q^{3}+3q^{7}-2q^{9}-6q^{11}-6q^{13}+\cdots\) | |
28900.2.a.e | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(3\) | $-$ | $-$ | $-$ | \(q-q^{3}+3q^{7}-2q^{9}+6q^{11}+6q^{13}+\cdots\) | |
28900.2.a.f | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | $-$ | $+$ | $+$ | \(q-4q^{7}-3q^{9}-2q^{11}+6q^{13}+6q^{29}+\cdots\) | |
28900.2.a.g | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | \(q-2q^{7}-3q^{9}-q^{11}+3q^{19}-3q^{29}+\cdots\) | |
28900.2.a.h | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | \(q+2q^{7}-3q^{9}+q^{11}+3q^{19}+3q^{29}+\cdots\) | |
28900.2.a.i | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | \(q+q^{3}-3q^{7}-2q^{9}-6q^{11}+6q^{13}+\cdots\) | |
28900.2.a.j | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-3\) | $-$ | $-$ | $-$ | \(q+q^{3}-3q^{7}-2q^{9}+6q^{11}-6q^{13}+\cdots\) | |
28900.2.a.k | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | \(q+q^{3}-q^{7}-2q^{9}+q^{13}-4q^{19}+\cdots\) | |
28900.2.a.l | $1$ | $230.768$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | \(q+2q^{3}+2q^{7}+q^{9}-5q^{11}-6q^{13}+\cdots\) | |
28900.2.a.m | $2$ | $230.768$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | ||
28900.2.a.n | $2$ | $230.768$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(-1\) | \(0\) | \(-5\) | $-$ | $+$ | $+$ | ||
28900.2.a.o | $2$ | $230.768$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.p | $2$ | $230.768$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.q | $2$ | $230.768$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.r | $2$ | $230.768$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(1\) | \(0\) | \(5\) | $-$ | $+$ | $-$ | ||
28900.2.a.s | $2$ | $230.768$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | ||
28900.2.a.t | $2$ | $230.768$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | ||
28900.2.a.u | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(-3\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | ||
28900.2.a.v | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(-3\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | ||
28900.2.a.w | $3$ | $230.768$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(-3\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | ||
28900.2.a.x | $3$ | $230.768$ | 3.3.1524.1 | None | \(0\) | \(-2\) | \(0\) | \(-4\) | $-$ | $+$ | $+$ | ||
28900.2.a.y | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | ||
28900.2.a.z | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | ||
28900.2.a.ba | $3$ | $230.768$ | 3.3.404.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.bb | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | ||
28900.2.a.bc | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | ||
28900.2.a.bd | $3$ | $230.768$ | 3.3.1524.1 | None | \(0\) | \(2\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | ||
28900.2.a.be | $3$ | $230.768$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(3\) | \(0\) | \(-6\) | $-$ | $+$ | $-$ | ||
28900.2.a.bf | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(3\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | ||
28900.2.a.bg | $3$ | $230.768$ | 3.3.785.1 | None | \(0\) | \(3\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | ||
28900.2.a.bh | $4$ | $230.768$ | 4.4.11344.1 | None | \(0\) | \(-2\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bi | $4$ | $230.768$ | \(\Q(\zeta_{16})^+\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
28900.2.a.bj | $4$ | $230.768$ | \(\Q(\sqrt{2}, \sqrt{13})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.bk | $4$ | $230.768$ | 4.4.11344.1 | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bl | $5$ | $230.768$ | 5.5.27977168.1 | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | ||
28900.2.a.bm | $5$ | $230.768$ | 5.5.27977168.1 | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | ||
28900.2.a.bn | $6$ | $230.768$ | 6.6.14414517.1 | None | \(0\) | \(-3\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
28900.2.a.bo | $6$ | $230.768$ | 6.6.9521152.1 | None | \(0\) | \(0\) | \(0\) | \(-4\) | $-$ | $+$ | $+$ | ||
28900.2.a.bp | $6$ | $230.768$ | 6.6.336208896.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bq | $6$ | $230.768$ | 6.6.336208896.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.br | $6$ | $230.768$ | 6.6.3031603600.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
28900.2.a.bs | $6$ | $230.768$ | 6.6.3031603600.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bt | $6$ | $230.768$ | 6.6.9521152.1 | None | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | ||
28900.2.a.bu | $6$ | $230.768$ | 6.6.14414517.1 | None | \(0\) | \(3\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.bv | $8$ | $230.768$ | 8.8.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bw | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
28900.2.a.bx | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | $-$ | $+$ | $-$ | ||
28900.2.a.by | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.bz | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.ca | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.cb | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | $-$ | $+$ | $-$ | ||
28900.2.a.cc | $12$ | $230.768$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.cd | $15$ | $230.768$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
28900.2.a.ce | $15$ | $230.768$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
28900.2.a.cf | $15$ | $230.768$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
28900.2.a.cg | $15$ | $230.768$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
28900.2.a.ch | $24$ | $230.768$ | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | |||
28900.2.a.ci | $24$ | $230.768$ | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | |||
28900.2.a.cj | $24$ | $230.768$ | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | |||
28900.2.a.ck | $24$ | $230.768$ | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | |||
28900.2.a.cl | $40$ | $230.768$ | None | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(28900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(28900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2890))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5780))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14450))\)\(^{\oplus 2}\)