Properties

Label 28900.2.a
Level $28900$
Weight $2$
Character orbit 28900.a
Rep. character $\chi_{28900}(1,\cdot)$
Character field $\Q$
Dimension $429$
Newform subspaces $64$
Sturm bound $9180$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28900 = 2^{2} \cdot 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 28900.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 64 \)
Sturm bound: \(9180\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(28900))\).

Total New Old
Modular forms 4752 429 4323
Cusp forms 4429 429 4000
Eisenstein series 323 0 323

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(594\)\(0\)\(594\)\(541\)\(0\)\(541\)\(53\)\(0\)\(53\)
\(+\)\(+\)\(-\)\(-\)\(606\)\(0\)\(606\)\(552\)\(0\)\(552\)\(54\)\(0\)\(54\)
\(+\)\(-\)\(+\)\(-\)\(603\)\(0\)\(603\)\(549\)\(0\)\(549\)\(54\)\(0\)\(54\)
\(+\)\(-\)\(-\)\(+\)\(599\)\(0\)\(599\)\(545\)\(0\)\(545\)\(54\)\(0\)\(54\)
\(-\)\(+\)\(+\)\(-\)\(594\)\(103\)\(491\)\(567\)\(103\)\(464\)\(27\)\(0\)\(27\)
\(-\)\(+\)\(-\)\(+\)\(582\)\(100\)\(482\)\(555\)\(100\)\(455\)\(27\)\(0\)\(27\)
\(-\)\(-\)\(+\)\(+\)\(585\)\(109\)\(476\)\(558\)\(109\)\(449\)\(27\)\(0\)\(27\)
\(-\)\(-\)\(-\)\(-\)\(589\)\(117\)\(472\)\(562\)\(117\)\(445\)\(27\)\(0\)\(27\)
Plus space\(+\)\(2360\)\(209\)\(2151\)\(2199\)\(209\)\(1990\)\(161\)\(0\)\(161\)
Minus space\(-\)\(2392\)\(220\)\(2172\)\(2230\)\(220\)\(2010\)\(162\)\(0\)\(162\)

Trace form

\( 429 q - 4 q^{7} + 425 q^{9} - 6 q^{11} - 10 q^{19} - 12 q^{21} + 8 q^{23} - 18 q^{29} + 6 q^{31} - 10 q^{33} + 10 q^{37} - 12 q^{39} - 14 q^{41} - 8 q^{43} - 16 q^{47} + 399 q^{49} + 12 q^{53} - 32 q^{57}+ \cdots - 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(28900))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
28900.2.a.a 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{7}+q^{9}+5q^{11}-6q^{13}+\cdots\)
28900.2.a.b 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}-2q^{13}-4q^{19}+\cdots\)
28900.2.a.c 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}-2q^{9}-q^{13}-4q^{19}+\cdots\)
28900.2.a.d 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}-2q^{9}-6q^{11}-6q^{13}+\cdots\)
28900.2.a.e 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}-2q^{9}+6q^{11}+6q^{13}+\cdots\)
28900.2.a.f 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{7}-3q^{9}-2q^{11}+6q^{13}+6q^{29}+\cdots\)
28900.2.a.g 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-3q^{9}-q^{11}+3q^{19}-3q^{29}+\cdots\)
28900.2.a.h 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-3q^{9}+q^{11}+3q^{19}+3q^{29}+\cdots\)
28900.2.a.i 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}-2q^{9}-6q^{11}+6q^{13}+\cdots\)
28900.2.a.j 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}-2q^{9}+6q^{11}-6q^{13}+\cdots\)
28900.2.a.k 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}-2q^{9}+q^{13}-4q^{19}+\cdots\)
28900.2.a.l 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(2\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{7}+q^{9}-5q^{11}-6q^{13}+\cdots\)
28900.2.a.m 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.n 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{21}) \) None \(0\) \(-1\) \(0\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.o 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.p 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.q 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.r 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{21}) \) None \(0\) \(1\) \(0\) \(5\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.s 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.t 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.u 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-3\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.v 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-3\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.w 28900.a 1.a $3$ $230.768$ \(\Q(\zeta_{18})^+\) None \(0\) \(-3\) \(0\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.x 28900.a 1.a $3$ $230.768$ 3.3.1524.1 None \(0\) \(-2\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.y 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.z 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.ba 28900.a 1.a $3$ $230.768$ 3.3.404.1 None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bb 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bc 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bd 28900.a 1.a $3$ $230.768$ 3.3.1524.1 None \(0\) \(2\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.be 28900.a 1.a $3$ $230.768$ \(\Q(\zeta_{18})^+\) None \(0\) \(3\) \(0\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bf 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(3\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bg 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(3\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.bh 28900.a 1.a $4$ $230.768$ 4.4.11344.1 None \(0\) \(-2\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bi 28900.a 1.a $4$ $230.768$ \(\Q(\zeta_{16})^+\) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bj 28900.a 1.a $4$ $230.768$ \(\Q(\sqrt{2}, \sqrt{13})\) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bk 28900.a 1.a $4$ $230.768$ 4.4.11344.1 None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bl 28900.a 1.a $5$ $230.768$ 5.5.27977168.1 None \(0\) \(-1\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bm 28900.a 1.a $5$ $230.768$ 5.5.27977168.1 None \(0\) \(1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bn 28900.a 1.a $6$ $230.768$ 6.6.14414517.1 None \(0\) \(-3\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bo 28900.a 1.a $6$ $230.768$ 6.6.9521152.1 None \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bp 28900.a 1.a $6$ $230.768$ 6.6.336208896.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bq 28900.a 1.a $6$ $230.768$ 6.6.336208896.1 None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.br 28900.a 1.a $6$ $230.768$ 6.6.3031603600.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.bs 28900.a 1.a $6$ $230.768$ 6.6.3031603600.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bt 28900.a 1.a $6$ $230.768$ 6.6.9521152.1 None \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bu 28900.a 1.a $6$ $230.768$ 6.6.14414517.1 None \(0\) \(3\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bv 28900.a 1.a $8$ $230.768$ 8.8.\(\cdots\).2 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bw 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-3\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bx 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(-8\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.by 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bz 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.ca 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.cb 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(8\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.cc 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(3\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.cd 28900.a 1.a $15$ $230.768$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(0\) \(-3\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.ce 28900.a 1.a $15$ $230.768$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(0\) \(-3\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.cf 28900.a 1.a $15$ $230.768$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(0\) \(3\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.cg 28900.a 1.a $15$ $230.768$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(0\) \(3\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.ch 28900.a 1.a $24$ $230.768$ None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.ci 28900.a 1.a $24$ $230.768$ None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.cj 28900.a 1.a $24$ $230.768$ None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.ck 28900.a 1.a $24$ $230.768$ None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.cl 28900.a 1.a $40$ $230.768$ None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(28900))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(28900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2890))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5780))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14450))\)\(^{\oplus 2}\)