gp:[N,k,chi] = [28830,2,Mod(1,28830)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("28830.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28830, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,-1,-1,1,-1,1,3,-1,1,1,-1,-1,0,-3,1,1,2,-1,2,-1,-3,1,-4,1,1,
0,-1,3,-7,-1,0,-1,1,-2,-3,1,4,-2,0,1,0,3,8,-1,-1,4,-6,-1,2,-1,-2,0,5,1,
1,-3,-2,7,-7,1,12,0,3,1,0,-1,-8,2,4,3,0,-1,-6,-4,-1,2,-3,0,8,-1,1,0,-9,
-3,-2,-8,7,1,6,1,0,-4,0,6,-2,1,-5,-2,-1,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
| \( p \) |
Sign
|
| \(2\) |
\( +1 \) |
| \(3\) |
\( +1 \) |
| \(5\) |
\( +1 \) |
| \(31\) |
\( +1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.