Properties

Label 288.4.c
Level $288$
Weight $4$
Character orbit 288.c
Rep. character $\chi_{288}(287,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 288.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(288, [\chi])\).

Total New Old
Modular forms 160 12 148
Cusp forms 128 12 116
Eisenstein series 32 0 32

Trace form

\( 12 q - 144 q^{13} - 636 q^{25} - 744 q^{37} - 684 q^{49} - 1848 q^{61} - 1536 q^{73} + 3480 q^{85} + 6048 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(288, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
288.4.c.a 288.c 12.b $4$ $16.993$ \(\Q(\zeta_{8})\) None 288.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{5}-\beta_1 q^{7}-\beta_{3} q^{11}+28 q^{13}+\cdots\)
288.4.c.b 288.c 12.b $8$ $16.993$ 8.0.\(\cdots\).8 None 288.4.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{2}+\beta _{5})q^{5}+(\beta _{1}-\beta _{3})q^{7}+(-2\beta _{6}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(288, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)