Defining parameters
Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 288.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(288, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 12 | 148 |
Cusp forms | 128 | 12 | 116 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(288, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
288.4.c.a | $4$ | $16.993$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{2} q^{5}-\beta_1 q^{7}-\beta_{3} q^{11}+28 q^{13}+\cdots\) |
288.4.c.b | $8$ | $16.993$ | 8.0.\(\cdots\).8 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{2}+\beta _{5})q^{5}+(\beta _{1}-\beta _{3})q^{7}+(-2\beta _{6}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(288, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)