Properties

Label 288.3.b
Level 288288
Weight 33
Character orbit 288.b
Rep. character χ288(271,)\chi_{288}(271,\cdot)
Character field Q\Q
Dimension 99
Newform subspaces 33
Sturm bound 144144
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 288=2532 288 = 2^{5} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 288.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 144144
Trace bound: 1111
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M3(288,[χ])M_{3}(288, [\chi]).

Total New Old
Modular forms 112 11 101
Cusp forms 80 9 71
Eisenstein series 32 2 30

Trace form

9q18q11+6q1730q1915q25+96q35+6q41+114q4339q49210q5996q65126q67+18q73+318q83+54q89+192q91+162q97+O(q100) 9 q - 18 q^{11} + 6 q^{17} - 30 q^{19} - 15 q^{25} + 96 q^{35} + 6 q^{41} + 114 q^{43} - 39 q^{49} - 210 q^{59} - 96 q^{65} - 126 q^{67} + 18 q^{73} + 318 q^{83} + 54 q^{89} + 192 q^{91} + 162 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(288,[χ])S_{3}^{\mathrm{new}}(288, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
288.3.b.a 288.b 8.d 11 7.8477.847 Q\Q Q(2)\Q(\sqrt{-2}) 8.3.d.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+14q112q17+34q19+52q25+q+14q^{11}-2q^{17}+34q^{19}+5^{2}q^{25}+\cdots
288.3.b.b 288.b 8.d 44 7.8477.847 4.0.4752.1 None 24.3.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5+(β1β2)q78q11+q+\beta _{1}q^{5}+(-\beta _{1}-\beta _{2})q^{7}-8q^{11}+\cdots
288.3.b.c 288.b 8.d 44 7.8477.847 Q(6,10)\Q(\sqrt{-6}, \sqrt{10}) None 72.3.b.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5β2q7β3q11+2β2q13+q-\beta _{1}q^{5}-\beta _{2}q^{7}-\beta _{3}q^{11}+2\beta _{2}q^{13}+\cdots

Decomposition of S3old(288,[χ])S_{3}^{\mathrm{old}}(288, [\chi]) into lower level spaces

S3old(288,[χ]) S_{3}^{\mathrm{old}}(288, [\chi]) \simeq S3new(8,[χ])S_{3}^{\mathrm{new}}(8, [\chi])9^{\oplus 9}\oplusS3new(24,[χ])S_{3}^{\mathrm{new}}(24, [\chi])6^{\oplus 6}\oplusS3new(32,[χ])S_{3}^{\mathrm{new}}(32, [\chi])3^{\oplus 3}\oplusS3new(72,[χ])S_{3}^{\mathrm{new}}(72, [\chi])3^{\oplus 3}\oplusS3new(96,[χ])S_{3}^{\mathrm{new}}(96, [\chi])2^{\oplus 2}