Properties

Label 28665.2.ot
Level $28665$
Weight $2$
Character orbit 28665.ot
Rep. character $\chi_{28665}(2402,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $4592$
Sturm bound $9408$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28665 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 28665.ot (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(9408\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(28665, [\chi])\).

Total New Old
Modular forms 19072 4592 14480
Cusp forms 18560 4592 13968
Eisenstein series 512 0 512

Decomposition of \(S_{2}^{\mathrm{new}}(28665, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(28665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(28665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1365, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4095, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(9555, [\chi])\)\(^{\oplus 2}\)