Properties

Label 28665.2.a.d
Level $28665$
Weight $2$
Character orbit 28665.a
Self dual yes
Analytic conductor $228.891$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28665,2,Mod(1,28665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28665.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 28665 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 28665.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,2,1,0,0,0,0,-2,1,0,1,0,0,-4,-1,0,2,2,0,-2,3,0,1,-2,0, 0,2,0,6,8,0,2,0,0,11,-4,0,0,-5,0,4,2,0,-6,-10,0,0,-2,0,2,-11,0,1,0,0,-4, 8,0,-13,-12,0,-8,1,0,12,-2,0,0,5,0,-10,-22,0,4,0,0,-3,-4,0,10,-12,0,-1, -8,0,0,-15,0,0,6,0,20,2,0,-17,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(228.891177394\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 2 q^{4} + q^{5} - 2 q^{10} + q^{11} + q^{13} - 4 q^{16} - q^{17} + 2 q^{19} + 2 q^{20} - 2 q^{22} + 3 q^{23} + q^{25} - 2 q^{26} + 2 q^{29} + 6 q^{31} + 8 q^{32} + 2 q^{34} + 11 q^{37}+ \cdots - 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.