Properties

Label 28665.2.a.cm
Level $28665$
Weight $2$
Character orbit 28665.a
Self dual yes
Analytic conductor $228.891$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28665,2,Mod(1,28665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28665.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 28665 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 28665.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,2,0,0,6,0,2,0,0,2,0,0,6,4,0,-4,2,0,8,4,0,2,2,0,0,4,0, -12,-6,0,8,0,0,0,0,0,6,-8,0,12,16,0,12,0,0,0,2,0,2,8,0,0,0,0,4,-12,0,8, 0,0,-14,2,0,24,12,0,0,-16,0,0,4,0,4,0,0,-16,6,0,-16,16,0,4,24,0,8,-20, 0,0,20,0,4,-4,0,12,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(228.891177394\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{5} + 6 q^{8} + 2 q^{10} + 2 q^{13} + 6 q^{16} + 4 q^{17} - 4 q^{19} + 2 q^{20} + 8 q^{22} + 4 q^{23} + 2 q^{25} + 2 q^{26} + 4 q^{29} - 12 q^{31} - 6 q^{32} + 8 q^{34} + 6 q^{40}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.