Properties

Label 2864.1
Level 2864
Weight 1
Dimension 11
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 512640
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2864 = 2^{4} \cdot 179 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(512640\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2864))\).

Total New Old
Modular forms 2708 808 1900
Cusp forms 216 11 205
Eisenstein series 2492 797 1695

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 7 0 4 0

Trace form

\( 11 q + 5 q^{3} - q^{5} + 6 q^{9} + 4 q^{12} + 3 q^{13} + 4 q^{14} + 2 q^{15} - 4 q^{16} - 5 q^{17} + q^{19} - 4 q^{22} + 6 q^{25} + 2 q^{27} - q^{29} - 3 q^{31} + 4 q^{36} + 2 q^{39} + 8 q^{42} + 5 q^{43}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2864))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2864.1.b \(\chi_{2864}(2505, \cdot)\) None 0 1
2864.1.d \(\chi_{2864}(1791, \cdot)\) None 0 1
2864.1.f \(\chi_{2864}(359, \cdot)\) None 0 1
2864.1.h \(\chi_{2864}(1073, \cdot)\) 2864.1.h.a 1 1
2864.1.h.b 2
2864.1.h.c 4
2864.1.k \(\chi_{2864}(1075, \cdot)\) None 0 2
2864.1.l \(\chi_{2864}(357, \cdot)\) 2864.1.l.a 4 2
2864.1.n \(\chi_{2864}(33, \cdot)\) None 0 88
2864.1.p \(\chi_{2864}(39, \cdot)\) None 0 88
2864.1.r \(\chi_{2864}(15, \cdot)\) None 0 88
2864.1.t \(\chi_{2864}(41, \cdot)\) None 0 88
2864.1.u \(\chi_{2864}(21, \cdot)\) None 0 176
2864.1.v \(\chi_{2864}(3, \cdot)\) None 0 176

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2864))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2864)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(179))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(358))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(716))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1432))\)\(^{\oplus 2}\)