Properties

Label 285.4.x
Level $285$
Weight $4$
Character orbit 285.x
Rep. character $\chi_{285}(88,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $240$
Sturm bound $160$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 285.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(285, [\chi])\).

Total New Old
Modular forms 496 240 256
Cusp forms 464 240 224
Eisenstein series 32 0 32

Trace form

\( 240 q - 16 q^{5} + 12 q^{6} + 16 q^{7} + 112 q^{11} + 1884 q^{16} - 128 q^{17} + 1520 q^{20} + 288 q^{21} + 432 q^{22} + 64 q^{23} - 296 q^{25} - 1216 q^{26} - 764 q^{28} - 96 q^{30} - 3036 q^{32} + 576 q^{33}+ \cdots - 7872 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(285, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(285, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(285, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)