Properties

Label 28314.2.a.bf
Level $28314$
Weight $2$
Character orbit 28314.a
Self dual yes
Analytic conductor $226.088$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28314,2,Mod(1,28314)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28314.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28314, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 28314 = 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 28314.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,-2,0,-4,1,0,-2,0,0,1,-4,0,1,-8,0,6,-2,0,0,6,0,-1,1,0, -4,-2,0,-2,1,0,-8,8,0,4,6,0,-2,2,0,-4,0,0,6,-4,0,9,-1,0,1,8,0,0,-4,0,-2, -12,0,2,-2,0,1,-2,0,12,-8,0,8,16,0,0,4,0,6,0,0,8,-2,0,2,4,0,16,-4,0,0, -10,0,-4,6,0,-4,-12,0,10,9,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(226.088428283\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} - 2 q^{5} - 4 q^{7} + q^{8} - 2 q^{10} + q^{13} - 4 q^{14} + q^{16} - 8 q^{17} + 6 q^{19} - 2 q^{20} + 6 q^{23} - q^{25} + q^{26} - 4 q^{28} - 2 q^{29} - 2 q^{31} + q^{32} - 8 q^{34}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.