Defining parameters
Level: | \( N \) | \(=\) | \( 280 = 2^{3} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 280.bl (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 64 | 40 |
Cusp forms | 88 | 64 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
280.2.bl.a | $4$ | $2.236$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(-8\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\) |
280.2.bl.b | $60$ | $2.236$ | None | \(4\) | \(0\) | \(0\) | \(8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(280, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)