Properties

Label 280.2.bl
Level $280$
Weight $2$
Character orbit 280.bl
Rep. character $\chi_{280}(221,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).

Total New Old
Modular forms 104 64 40
Cusp forms 88 64 24
Eisenstein series 16 0 16

Trace form

\( 64 q + 2 q^{2} - 2 q^{4} - 4 q^{8} + 32 q^{9} - 10 q^{12} + 18 q^{14} - 14 q^{16} - 8 q^{20} - 40 q^{22} - 8 q^{23} - 32 q^{24} + 32 q^{25} - 2 q^{26} - 22 q^{28} + 2 q^{32} - 40 q^{34} + 20 q^{36} - 40 q^{38}+ \cdots - 58 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
280.2.bl.a 280.bl 56.p $4$ $2.236$ \(\Q(\zeta_{12})\) None 280.2.bl.a \(-2\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
280.2.bl.b 280.bl 56.p $60$ $2.236$ None 280.2.bl.b \(4\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)