Properties

Label 28.7.b
Level $28$
Weight $7$
Character orbit 28.b
Rep. character $\chi_{28}(13,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 28.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(28, [\chi])\).

Total New Old
Modular forms 27 4 23
Cusp forms 21 4 17
Eisenstein series 6 0 6

Trace form

\( 4 q - 28 q^{7} - 156 q^{9} - 216 q^{11} + 768 q^{15} + 5376 q^{21} - 13752 q^{23} - 3548 q^{25} + 34920 q^{29} + 64512 q^{35} - 158936 q^{37} - 60672 q^{39} + 215080 q^{43} + 320068 q^{49} - 665088 q^{51}+ \cdots + 3169512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(28, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
28.7.b.a 28.b 7.b $4$ $6.442$ 4.0.903168.1 None 28.7.b.a \(0\) \(0\) \(0\) \(-28\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{1}q^{5}+(-7-\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{7}^{\mathrm{old}}(28, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(28, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)