Properties

Label 2793.1.ci
Level $2793$
Weight $1$
Character orbit 2793.ci
Rep. character $\chi_{2793}(557,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $6$
Newform subspaces $1$
Sturm bound $373$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.ci (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 399 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(373\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2793, [\chi])\).

Total New Old
Modular forms 114 54 60
Cusp forms 18 6 12
Eisenstein series 96 48 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q - 6 q^{12} + 3 q^{13} + 3 q^{19} + 3 q^{27} - 3 q^{43} + 3 q^{52} + 3 q^{61} - 3 q^{64} - 3 q^{67} - 6 q^{73} + 3 q^{75} + 6 q^{79} - 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2793, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2793.1.ci.a 2793.ci 399.ba $6$ $1.394$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-3}) \) None 399.1.ca.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{18}^{4}q^{3}-\zeta_{18}^{5}q^{4}+\zeta_{18}^{8}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2793, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2793, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 2}\)