gp:[N,k,chi] = [27885,2,Mod(1,27885)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27885.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27885, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,-1,1,-1,-5,-3,1,1,1,1,0,-5,-1,-1,0,1,-6,-1,5,1,1,3,1,
0,-1,5,-1,-1,-3,5,-1,0,-5,-1,8,-6,0,-3,-5,5,-1,-1,1,1,-1,1,18,1,0,0,-9,
-1,1,15,6,-1,0,1,8,-3,-5,7,0,-1,-2,0,-1,-5,-8,-3,11,8,-1,6,-5,0,10,-1,
1,-5,14,-5,0,-1,1,-3,14,1,0,-1,3,-1,-6,-5,12,18,1,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
| \( p \) |
Sign
|
| \(3\) |
\( +1 \) |
| \(5\) |
\( -1 \) |
| \(11\) |
\( -1 \) |
| \(13\) |
\( +1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.