Properties

Label 2775.2.cw
Level $2775$
Weight $2$
Character orbit 2775.cw
Rep. character $\chi_{2775}(64,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $1536$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2775 = 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2775.cw (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 925 \)
Character field: \(\Q(\zeta_{30})\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2775, [\chi])\).

Total New Old
Modular forms 3072 1536 1536
Cusp forms 3008 1536 1472
Eisenstein series 64 0 64

Trace form

\( 1536 q + 196 q^{4} + 12 q^{5} - 192 q^{9} + 4 q^{10} + 204 q^{16} + 120 q^{20} - 8 q^{21} - 4 q^{25} + 48 q^{26} - 16 q^{30} - 18 q^{34} - 42 q^{35} + 392 q^{36} - 20 q^{37} - 16 q^{40} - 42 q^{41} - 42 q^{44}+ \cdots + 90 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2775, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2775, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2775, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(925, [\chi])\)\(^{\oplus 2}\)