Properties

Label 276.2.i.a.169.1
Level $276$
Weight $2$
Character 276.169
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 169.1
Root \(-0.0616736 - 0.0396352i\) of defining polynomial
Character \(\chi\) \(=\) 276.169
Dual form 276.2.i.a.49.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 + 0.909632i) q^{3} +(-2.38152 - 2.74842i) q^{5} +(-3.67577 - 2.36227i) q^{7} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(0.415415 + 0.909632i) q^{3} +(-2.38152 - 2.74842i) q^{5} +(-3.67577 - 2.36227i) q^{7} +(-0.654861 + 0.755750i) q^{9} +(-0.389333 - 2.70787i) q^{11} +(-5.17334 + 3.32470i) q^{13} +(1.51073 - 3.30804i) q^{15} +(1.26223 - 0.370623i) q^{17} +(5.16792 + 1.51744i) q^{19} +(0.621829 - 4.32492i) q^{21} +(0.596495 - 4.75859i) q^{23} +(-1.17061 + 8.14175i) q^{25} +(-0.959493 - 0.281733i) q^{27} +(6.27083 - 1.84128i) q^{29} +(1.69960 - 3.72161i) q^{31} +(2.30143 - 1.47904i) q^{33} +(2.26140 + 15.7284i) q^{35} +(-3.77633 + 4.35811i) q^{37} +(-5.17334 - 3.32470i) q^{39} +(-5.09298 - 5.87761i) q^{41} +(-3.90999 - 8.56169i) q^{43} +3.63668 q^{45} -5.07522 q^{47} +(5.02302 + 10.9989i) q^{49} +(0.861478 + 0.994198i) q^{51} +(3.43531 + 2.20774i) q^{53} +(-6.51516 + 7.51890i) q^{55} +(0.766521 + 5.33127i) q^{57} +(-2.90665 + 1.86799i) q^{59} +(-1.10276 + 2.41471i) q^{61} +(4.19240 - 1.23100i) q^{63} +(21.4581 + 6.30067i) q^{65} +(0.627040 - 4.36116i) q^{67} +(4.57636 - 1.43420i) q^{69} +(1.45569 - 10.1245i) q^{71} +(6.23284 + 1.83013i) q^{73} +(-7.89228 + 2.31738i) q^{75} +(-4.96562 + 10.8732i) q^{77} +(-2.84247 + 1.82675i) q^{79} +(-0.142315 - 0.989821i) q^{81} +(4.71120 - 5.43702i) q^{83} +(-4.02464 - 2.58648i) q^{85} +(4.27989 + 4.93925i) q^{87} +(-4.07521 - 8.92347i) q^{89} +26.8698 q^{91} +4.09134 q^{93} +(-8.13695 - 17.8174i) q^{95} +(-1.60428 - 1.85144i) q^{97} +(2.30143 + 1.47904i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{3}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.415415 + 0.909632i 0.239840 + 0.525176i
\(4\) 0 0
\(5\) −2.38152 2.74842i −1.06505 1.22913i −0.972372 0.233436i \(-0.925003\pi\)
−0.0926766 0.995696i \(-0.529542\pi\)
\(6\) 0 0
\(7\) −3.67577 2.36227i −1.38931 0.892855i −0.389703 0.920940i \(-0.627422\pi\)
−0.999606 + 0.0280858i \(0.991059\pi\)
\(8\) 0 0
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) 0 0
\(11\) −0.389333 2.70787i −0.117388 0.816453i −0.960413 0.278579i \(-0.910137\pi\)
0.843025 0.537874i \(-0.180772\pi\)
\(12\) 0 0
\(13\) −5.17334 + 3.32470i −1.43483 + 0.922107i −0.435062 + 0.900401i \(0.643274\pi\)
−0.999764 + 0.0217064i \(0.993090\pi\)
\(14\) 0 0
\(15\) 1.51073 3.30804i 0.390070 0.854133i
\(16\) 0 0
\(17\) 1.26223 0.370623i 0.306135 0.0898892i −0.125057 0.992150i \(-0.539911\pi\)
0.431192 + 0.902260i \(0.358093\pi\)
\(18\) 0 0
\(19\) 5.16792 + 1.51744i 1.18560 + 0.348124i 0.814331 0.580400i \(-0.197104\pi\)
0.371271 + 0.928525i \(0.378922\pi\)
\(20\) 0 0
\(21\) 0.621829 4.32492i 0.135694 0.943774i
\(22\) 0 0
\(23\) 0.596495 4.75859i 0.124378 0.992235i
\(24\) 0 0
\(25\) −1.17061 + 8.14175i −0.234121 + 1.62835i
\(26\) 0 0
\(27\) −0.959493 0.281733i −0.184655 0.0542195i
\(28\) 0 0
\(29\) 6.27083 1.84128i 1.16446 0.341917i 0.358298 0.933607i \(-0.383357\pi\)
0.806166 + 0.591690i \(0.201539\pi\)
\(30\) 0 0
\(31\) 1.69960 3.72161i 0.305258 0.668422i −0.693381 0.720571i \(-0.743880\pi\)
0.998639 + 0.0521491i \(0.0166071\pi\)
\(32\) 0 0
\(33\) 2.30143 1.47904i 0.400627 0.257468i
\(34\) 0 0
\(35\) 2.26140 + 15.7284i 0.382246 + 2.65858i
\(36\) 0 0
\(37\) −3.77633 + 4.35811i −0.620824 + 0.716469i −0.975863 0.218382i \(-0.929922\pi\)
0.355039 + 0.934851i \(0.384467\pi\)
\(38\) 0 0
\(39\) −5.17334 3.32470i −0.828397 0.532379i
\(40\) 0 0
\(41\) −5.09298 5.87761i −0.795389 0.917928i 0.202730 0.979235i \(-0.435019\pi\)
−0.998119 + 0.0613065i \(0.980473\pi\)
\(42\) 0 0
\(43\) −3.90999 8.56169i −0.596268 1.30565i −0.931579 0.363538i \(-0.881569\pi\)
0.335311 0.942107i \(-0.391159\pi\)
\(44\) 0 0
\(45\) 3.63668 0.542125
\(46\) 0 0
\(47\) −5.07522 −0.740297 −0.370148 0.928973i \(-0.620693\pi\)
−0.370148 + 0.928973i \(0.620693\pi\)
\(48\) 0 0
\(49\) 5.02302 + 10.9989i 0.717575 + 1.57127i
\(50\) 0 0
\(51\) 0.861478 + 0.994198i 0.120631 + 0.139216i
\(52\) 0 0
\(53\) 3.43531 + 2.20774i 0.471877 + 0.303257i 0.754881 0.655862i \(-0.227695\pi\)
−0.283004 + 0.959119i \(0.591331\pi\)
\(54\) 0 0
\(55\) −6.51516 + 7.51890i −0.878504 + 1.01385i
\(56\) 0 0
\(57\) 0.766521 + 5.33127i 0.101528 + 0.706144i
\(58\) 0 0
\(59\) −2.90665 + 1.86799i −0.378414 + 0.243192i −0.715996 0.698104i \(-0.754027\pi\)
0.337582 + 0.941296i \(0.390391\pi\)
\(60\) 0 0
\(61\) −1.10276 + 2.41471i −0.141194 + 0.309172i −0.966997 0.254786i \(-0.917995\pi\)
0.825803 + 0.563958i \(0.190722\pi\)
\(62\) 0 0
\(63\) 4.19240 1.23100i 0.528193 0.155091i
\(64\) 0 0
\(65\) 21.4581 + 6.30067i 2.66155 + 0.781502i
\(66\) 0 0
\(67\) 0.627040 4.36116i 0.0766052 0.532801i −0.914996 0.403464i \(-0.867806\pi\)
0.991601 0.129337i \(-0.0412848\pi\)
\(68\) 0 0
\(69\) 4.57636 1.43420i 0.550929 0.172657i
\(70\) 0 0
\(71\) 1.45569 10.1245i 0.172759 1.20156i −0.700264 0.713884i \(-0.746934\pi\)
0.873023 0.487679i \(-0.162156\pi\)
\(72\) 0 0
\(73\) 6.23284 + 1.83013i 0.729499 + 0.214200i 0.625331 0.780360i \(-0.284964\pi\)
0.104168 + 0.994560i \(0.466782\pi\)
\(74\) 0 0
\(75\) −7.89228 + 2.31738i −0.911322 + 0.267588i
\(76\) 0 0
\(77\) −4.96562 + 10.8732i −0.565885 + 1.23912i
\(78\) 0 0
\(79\) −2.84247 + 1.82675i −0.319803 + 0.205525i −0.690686 0.723155i \(-0.742691\pi\)
0.370883 + 0.928680i \(0.379055\pi\)
\(80\) 0 0
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) 0 0
\(83\) 4.71120 5.43702i 0.517122 0.596790i −0.435786 0.900050i \(-0.643530\pi\)
0.952908 + 0.303260i \(0.0980751\pi\)
\(84\) 0 0
\(85\) −4.02464 2.58648i −0.436534 0.280543i
\(86\) 0 0
\(87\) 4.27989 + 4.93925i 0.458852 + 0.529543i
\(88\) 0 0
\(89\) −4.07521 8.92347i −0.431972 0.945886i −0.993003 0.118091i \(-0.962322\pi\)
0.561031 0.827795i \(-0.310405\pi\)
\(90\) 0 0
\(91\) 26.8698 2.81672
\(92\) 0 0
\(93\) 4.09134 0.424252
\(94\) 0 0
\(95\) −8.13695 17.8174i −0.834834 1.82803i
\(96\) 0 0
\(97\) −1.60428 1.85144i −0.162890 0.187985i 0.668437 0.743769i \(-0.266964\pi\)
−0.831327 + 0.555784i \(0.812418\pi\)
\(98\) 0 0
\(99\) 2.30143 + 1.47904i 0.231302 + 0.148649i
\(100\) 0 0
\(101\) −10.7712 + 12.4307i −1.07178 + 1.23690i −0.101516 + 0.994834i \(0.532369\pi\)
−0.970261 + 0.242063i \(0.922176\pi\)
\(102\) 0 0
\(103\) 0.732867 + 5.09720i 0.0722115 + 0.502242i 0.993542 + 0.113463i \(0.0361942\pi\)
−0.921331 + 0.388780i \(0.872897\pi\)
\(104\) 0 0
\(105\) −13.3676 + 8.59083i −1.30454 + 0.838380i
\(106\) 0 0
\(107\) −3.77368 + 8.26320i −0.364815 + 0.798833i 0.634842 + 0.772642i \(0.281065\pi\)
−0.999657 + 0.0261913i \(0.991662\pi\)
\(108\) 0 0
\(109\) 3.02983 0.889638i 0.290205 0.0852119i −0.133390 0.991064i \(-0.542586\pi\)
0.423595 + 0.905852i \(0.360768\pi\)
\(110\) 0 0
\(111\) −5.53302 1.62464i −0.525171 0.154204i
\(112\) 0 0
\(113\) 1.95433 13.5927i 0.183848 1.27869i −0.663711 0.747990i \(-0.731019\pi\)
0.847559 0.530702i \(-0.178072\pi\)
\(114\) 0 0
\(115\) −14.4992 + 9.69327i −1.35206 + 0.903902i
\(116\) 0 0
\(117\) 0.875174 6.08697i 0.0809098 0.562740i
\(118\) 0 0
\(119\) −5.51516 1.61940i −0.505574 0.148450i
\(120\) 0 0
\(121\) 3.37345 0.990535i 0.306677 0.0900486i
\(122\) 0 0
\(123\) 3.23076 7.07438i 0.291308 0.637875i
\(124\) 0 0
\(125\) 9.86792 6.34173i 0.882614 0.567222i
\(126\) 0 0
\(127\) −1.39341 9.69141i −0.123646 0.859974i −0.953371 0.301802i \(-0.902412\pi\)
0.829725 0.558172i \(-0.188497\pi\)
\(128\) 0 0
\(129\) 6.16372 7.11331i 0.542685 0.626292i
\(130\) 0 0
\(131\) 4.15454 + 2.66996i 0.362984 + 0.233275i 0.709401 0.704805i \(-0.248966\pi\)
−0.346417 + 0.938080i \(0.612602\pi\)
\(132\) 0 0
\(133\) −15.4115 17.7858i −1.33634 1.54222i
\(134\) 0 0
\(135\) 1.51073 + 3.30804i 0.130023 + 0.284711i
\(136\) 0 0
\(137\) −21.0333 −1.79699 −0.898496 0.438982i \(-0.855339\pi\)
−0.898496 + 0.438982i \(0.855339\pi\)
\(138\) 0 0
\(139\) −8.52288 −0.722901 −0.361451 0.932391i \(-0.617718\pi\)
−0.361451 + 0.932391i \(0.617718\pi\)
\(140\) 0 0
\(141\) −2.10832 4.61658i −0.177553 0.388786i
\(142\) 0 0
\(143\) 11.0170 + 12.7143i 0.921289 + 1.06322i
\(144\) 0 0
\(145\) −19.9947 12.8498i −1.66047 1.06712i
\(146\) 0 0
\(147\) −7.91830 + 9.13821i −0.653090 + 0.753707i
\(148\) 0 0
\(149\) 0.416644 + 2.89782i 0.0341328 + 0.237399i 0.999745 0.0225883i \(-0.00719069\pi\)
−0.965612 + 0.259987i \(0.916282\pi\)
\(150\) 0 0
\(151\) 14.9062 9.57967i 1.21305 0.779582i 0.231886 0.972743i \(-0.425510\pi\)
0.981167 + 0.193161i \(0.0618739\pi\)
\(152\) 0 0
\(153\) −0.546484 + 1.19663i −0.0441806 + 0.0967420i
\(154\) 0 0
\(155\) −14.2762 + 4.19188i −1.14669 + 0.336700i
\(156\) 0 0
\(157\) 6.80773 + 1.99893i 0.543316 + 0.159532i 0.541863 0.840467i \(-0.317719\pi\)
0.00145328 + 0.999999i \(0.499537\pi\)
\(158\) 0 0
\(159\) −0.581152 + 4.04200i −0.0460883 + 0.320551i
\(160\) 0 0
\(161\) −13.4337 + 16.0824i −1.05872 + 1.26747i
\(162\) 0 0
\(163\) −0.120072 + 0.835116i −0.00940473 + 0.0654113i −0.993983 0.109531i \(-0.965065\pi\)
0.984579 + 0.174943i \(0.0559740\pi\)
\(164\) 0 0
\(165\) −9.54593 2.80294i −0.743149 0.218208i
\(166\) 0 0
\(167\) 18.2940 5.37161i 1.41563 0.415668i 0.517612 0.855616i \(-0.326821\pi\)
0.898023 + 0.439948i \(0.145003\pi\)
\(168\) 0 0
\(169\) 10.3094 22.5744i 0.793031 1.73649i
\(170\) 0 0
\(171\) −4.53107 + 2.91194i −0.346500 + 0.222682i
\(172\) 0 0
\(173\) 2.19624 + 15.2752i 0.166977 + 1.16135i 0.885088 + 0.465424i \(0.154098\pi\)
−0.718111 + 0.695929i \(0.754993\pi\)
\(174\) 0 0
\(175\) 23.5359 27.1619i 1.77915 2.05324i
\(176\) 0 0
\(177\) −2.90665 1.86799i −0.218477 0.140407i
\(178\) 0 0
\(179\) 7.96069 + 9.18713i 0.595010 + 0.686678i 0.970763 0.240042i \(-0.0771612\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(180\) 0 0
\(181\) −3.09564 6.77850i −0.230097 0.503842i 0.759003 0.651087i \(-0.225687\pi\)
−0.989100 + 0.147245i \(0.952959\pi\)
\(182\) 0 0
\(183\) −2.65460 −0.196234
\(184\) 0 0
\(185\) 20.9713 1.54184
\(186\) 0 0
\(187\) −1.49502 3.27364i −0.109327 0.239393i
\(188\) 0 0
\(189\) 2.86134 + 3.30217i 0.208132 + 0.240197i
\(190\) 0 0
\(191\) −6.49183 4.17204i −0.469732 0.301878i 0.284277 0.958742i \(-0.408246\pi\)
−0.754009 + 0.656864i \(0.771883\pi\)
\(192\) 0 0
\(193\) 5.64707 6.51706i 0.406485 0.469108i −0.515188 0.857077i \(-0.672278\pi\)
0.921672 + 0.387969i \(0.126823\pi\)
\(194\) 0 0
\(195\) 3.18273 + 22.1364i 0.227920 + 1.58522i
\(196\) 0 0
\(197\) 8.19376 5.26581i 0.583781 0.375173i −0.215164 0.976578i \(-0.569028\pi\)
0.798944 + 0.601405i \(0.205392\pi\)
\(198\) 0 0
\(199\) 6.61876 14.4931i 0.469191 1.02739i −0.516104 0.856526i \(-0.672618\pi\)
0.985295 0.170860i \(-0.0546546\pi\)
\(200\) 0 0
\(201\) 4.22753 1.24132i 0.298187 0.0875557i
\(202\) 0 0
\(203\) −27.3997 8.04528i −1.92308 0.564668i
\(204\) 0 0
\(205\) −4.02512 + 27.9953i −0.281126 + 1.95528i
\(206\) 0 0
\(207\) 3.20568 + 3.56702i 0.222810 + 0.247925i
\(208\) 0 0
\(209\) 2.09698 14.5848i 0.145051 1.00885i
\(210\) 0 0
\(211\) −4.96850 1.45888i −0.342046 0.100434i 0.106198 0.994345i \(-0.466132\pi\)
−0.448244 + 0.893911i \(0.647950\pi\)
\(212\) 0 0
\(213\) 9.81433 2.88175i 0.672467 0.197454i
\(214\) 0 0
\(215\) −14.2194 + 31.1362i −0.969755 + 2.12347i
\(216\) 0 0
\(217\) −15.0388 + 9.66486i −1.02090 + 0.656093i
\(218\) 0 0
\(219\) 0.924473 + 6.42985i 0.0624701 + 0.434489i
\(220\) 0 0
\(221\) −5.29771 + 6.11388i −0.356363 + 0.411264i
\(222\) 0 0
\(223\) 10.9141 + 7.01405i 0.730860 + 0.469695i 0.852399 0.522891i \(-0.175147\pi\)
−0.121539 + 0.992587i \(0.538783\pi\)
\(224\) 0 0
\(225\) −5.38654 6.21640i −0.359103 0.414426i
\(226\) 0 0
\(227\) −3.94877 8.64661i −0.262089 0.573896i 0.732142 0.681152i \(-0.238521\pi\)
−0.994231 + 0.107256i \(0.965793\pi\)
\(228\) 0 0
\(229\) 16.4978 1.09020 0.545102 0.838370i \(-0.316491\pi\)
0.545102 + 0.838370i \(0.316491\pi\)
\(230\) 0 0
\(231\) −11.9534 −0.786476
\(232\) 0 0
\(233\) 0.696931 + 1.52607i 0.0456574 + 0.0999759i 0.931086 0.364799i \(-0.118862\pi\)
−0.885429 + 0.464775i \(0.846135\pi\)
\(234\) 0 0
\(235\) 12.0867 + 13.9488i 0.788452 + 0.909922i
\(236\) 0 0
\(237\) −2.84247 1.82675i −0.184638 0.118660i
\(238\) 0 0
\(239\) −0.289779 + 0.334423i −0.0187443 + 0.0216320i −0.765044 0.643978i \(-0.777283\pi\)
0.746300 + 0.665610i \(0.231828\pi\)
\(240\) 0 0
\(241\) 4.13843 + 28.7834i 0.266580 + 1.85410i 0.480165 + 0.877178i \(0.340577\pi\)
−0.213586 + 0.976924i \(0.568514\pi\)
\(242\) 0 0
\(243\) 0.841254 0.540641i 0.0539664 0.0346821i
\(244\) 0 0
\(245\) 18.2672 39.9995i 1.16705 2.55547i
\(246\) 0 0
\(247\) −31.7804 + 9.33158i −2.02214 + 0.593754i
\(248\) 0 0
\(249\) 6.90279 + 2.02684i 0.437446 + 0.128446i
\(250\) 0 0
\(251\) −1.09678 + 7.62826i −0.0692280 + 0.481491i 0.925484 + 0.378787i \(0.123659\pi\)
−0.994712 + 0.102704i \(0.967250\pi\)
\(252\) 0 0
\(253\) −13.1179 + 0.237447i −0.824714 + 0.0149281i
\(254\) 0 0
\(255\) 0.680849 4.73541i 0.0426364 0.296543i
\(256\) 0 0
\(257\) −19.2008 5.63786i −1.19771 0.351680i −0.378735 0.925505i \(-0.623641\pi\)
−0.818978 + 0.573825i \(0.805459\pi\)
\(258\) 0 0
\(259\) 24.1759 7.09869i 1.50222 0.441091i
\(260\) 0 0
\(261\) −2.71497 + 5.94496i −0.168053 + 0.367984i
\(262\) 0 0
\(263\) 10.8503 6.97308i 0.669059 0.429978i −0.161527 0.986868i \(-0.551642\pi\)
0.830586 + 0.556890i \(0.188006\pi\)
\(264\) 0 0
\(265\) −2.11347 14.6995i −0.129829 0.902982i
\(266\) 0 0
\(267\) 6.42417 7.41389i 0.393153 0.453723i
\(268\) 0 0
\(269\) 12.9289 + 8.30888i 0.788287 + 0.506601i 0.871774 0.489908i \(-0.162970\pi\)
−0.0834876 + 0.996509i \(0.526606\pi\)
\(270\) 0 0
\(271\) 13.2251 + 15.2626i 0.803370 + 0.927139i 0.998561 0.0536265i \(-0.0170780\pi\)
−0.195191 + 0.980765i \(0.562533\pi\)
\(272\) 0 0
\(273\) 11.1621 + 24.4417i 0.675563 + 1.47928i
\(274\) 0 0
\(275\) 22.5025 1.35695
\(276\) 0 0
\(277\) 22.7999 1.36991 0.684957 0.728584i \(-0.259821\pi\)
0.684957 + 0.728584i \(0.259821\pi\)
\(278\) 0 0
\(279\) 1.69960 + 3.72161i 0.101753 + 0.222807i
\(280\) 0 0
\(281\) −9.75419 11.2569i −0.581886 0.671533i 0.386123 0.922447i \(-0.373814\pi\)
−0.968009 + 0.250915i \(0.919269\pi\)
\(282\) 0 0
\(283\) 0.530368 + 0.340847i 0.0315271 + 0.0202612i 0.556309 0.830975i \(-0.312217\pi\)
−0.524782 + 0.851236i \(0.675853\pi\)
\(284\) 0 0
\(285\) 12.8271 14.8033i 0.759812 0.876870i
\(286\) 0 0
\(287\) 4.83608 + 33.6357i 0.285465 + 1.98545i
\(288\) 0 0
\(289\) −12.8455 + 8.25528i −0.755615 + 0.485604i
\(290\) 0 0
\(291\) 1.01768 2.22842i 0.0596577 0.130632i
\(292\) 0 0
\(293\) −12.4802 + 3.66452i −0.729101 + 0.214083i −0.625156 0.780500i \(-0.714965\pi\)
−0.103945 + 0.994583i \(0.533147\pi\)
\(294\) 0 0
\(295\) 12.0563 + 3.54005i 0.701944 + 0.206109i
\(296\) 0 0
\(297\) −0.389333 + 2.70787i −0.0225914 + 0.157126i
\(298\) 0 0
\(299\) 12.7350 + 26.6010i 0.736486 + 1.53837i
\(300\) 0 0
\(301\) −5.85281 + 40.7072i −0.337351 + 2.34633i
\(302\) 0 0
\(303\) −15.7819 4.63397i −0.906644 0.266215i
\(304\) 0 0
\(305\) 9.26290 2.71983i 0.530392 0.155737i
\(306\) 0 0
\(307\) −4.34960 + 9.52429i −0.248245 + 0.543580i −0.992201 0.124648i \(-0.960220\pi\)
0.743956 + 0.668228i \(0.232947\pi\)
\(308\) 0 0
\(309\) −4.33213 + 2.78409i −0.246447 + 0.158382i
\(310\) 0 0
\(311\) −0.934480 6.49945i −0.0529895 0.368550i −0.999012 0.0444482i \(-0.985847\pi\)
0.946022 0.324102i \(-0.105062\pi\)
\(312\) 0 0
\(313\) 6.05372 6.98637i 0.342177 0.394893i −0.558413 0.829563i \(-0.688590\pi\)
0.900590 + 0.434670i \(0.143135\pi\)
\(314\) 0 0
\(315\) −13.3676 8.59083i −0.753179 0.484039i
\(316\) 0 0
\(317\) −17.1993 19.8491i −0.966009 1.11483i −0.993341 0.115208i \(-0.963247\pi\)
0.0273323 0.999626i \(-0.491299\pi\)
\(318\) 0 0
\(319\) −7.42739 16.2637i −0.415854 0.910593i
\(320\) 0 0
\(321\) −9.08411 −0.507026
\(322\) 0 0
\(323\) 7.08548 0.394246
\(324\) 0 0
\(325\) −21.0130 46.0120i −1.16559 2.55228i
\(326\) 0 0
\(327\) 2.06788 + 2.38646i 0.114354 + 0.131972i
\(328\) 0 0
\(329\) 18.6553 + 11.9890i 1.02850 + 0.660977i
\(330\) 0 0
\(331\) 8.65360 9.98678i 0.475645 0.548923i −0.466328 0.884612i \(-0.654423\pi\)
0.941973 + 0.335689i \(0.108969\pi\)
\(332\) 0 0
\(333\) −0.820674 5.70791i −0.0449727 0.312792i
\(334\) 0 0
\(335\) −13.4796 + 8.66283i −0.736471 + 0.473301i
\(336\) 0 0
\(337\) −0.171381 + 0.375272i −0.00933572 + 0.0204424i −0.914242 0.405168i \(-0.867213\pi\)
0.904907 + 0.425610i \(0.139940\pi\)
\(338\) 0 0
\(339\) 13.1762 3.86888i 0.715632 0.210129i
\(340\) 0 0
\(341\) −10.7394 3.15336i −0.581569 0.170764i
\(342\) 0 0
\(343\) 3.16609 22.0207i 0.170953 1.18900i
\(344\) 0 0
\(345\) −14.8405 9.16219i −0.798985 0.493276i
\(346\) 0 0
\(347\) −2.33726 + 16.2560i −0.125470 + 0.872666i 0.825724 + 0.564074i \(0.190767\pi\)
−0.951195 + 0.308592i \(0.900142\pi\)
\(348\) 0 0
\(349\) −19.4599 5.71394i −1.04166 0.305860i −0.284219 0.958759i \(-0.591734\pi\)
−0.757445 + 0.652899i \(0.773552\pi\)
\(350\) 0 0
\(351\) 5.90046 1.73253i 0.314943 0.0924757i
\(352\) 0 0
\(353\) −1.33471 + 2.92262i −0.0710397 + 0.155555i −0.941821 0.336116i \(-0.890887\pi\)
0.870781 + 0.491671i \(0.163614\pi\)
\(354\) 0 0
\(355\) −31.2933 + 20.1110i −1.66088 + 1.06738i
\(356\) 0 0
\(357\) −0.818024 5.68948i −0.0432944 0.301119i
\(358\) 0 0
\(359\) 15.1188 17.4481i 0.797941 0.920873i −0.200326 0.979729i \(-0.564200\pi\)
0.998266 + 0.0588565i \(0.0187454\pi\)
\(360\) 0 0
\(361\) 8.42096 + 5.41182i 0.443209 + 0.284833i
\(362\) 0 0
\(363\) 2.30240 + 2.65712i 0.120845 + 0.139462i
\(364\) 0 0
\(365\) −9.81368 21.4890i −0.513672 1.12478i
\(366\) 0 0
\(367\) −28.8899 −1.50804 −0.754019 0.656852i \(-0.771888\pi\)
−0.754019 + 0.656852i \(0.771888\pi\)
\(368\) 0 0
\(369\) 7.77719 0.404864
\(370\) 0 0
\(371\) −7.41212 16.2303i −0.384818 0.842634i
\(372\) 0 0
\(373\) 8.27775 + 9.55304i 0.428606 + 0.494637i 0.928439 0.371484i \(-0.121151\pi\)
−0.499834 + 0.866121i \(0.666605\pi\)
\(374\) 0 0
\(375\) 9.86792 + 6.34173i 0.509577 + 0.327486i
\(376\) 0 0
\(377\) −26.3194 + 30.3742i −1.35552 + 1.56435i
\(378\) 0 0
\(379\) 0.618344 + 4.30067i 0.0317622 + 0.220911i 0.999520 0.0309706i \(-0.00985981\pi\)
−0.967758 + 0.251881i \(0.918951\pi\)
\(380\) 0 0
\(381\) 8.23677 5.29345i 0.421983 0.271192i
\(382\) 0 0
\(383\) 3.68558 8.07030i 0.188325 0.412373i −0.791793 0.610789i \(-0.790852\pi\)
0.980118 + 0.198416i \(0.0635796\pi\)
\(384\) 0 0
\(385\) 41.7099 12.2471i 2.12573 0.624171i
\(386\) 0 0
\(387\) 9.03099 + 2.65174i 0.459071 + 0.134795i
\(388\) 0 0
\(389\) 0.965816 6.71740i 0.0489688 0.340586i −0.950578 0.310486i \(-0.899508\pi\)
0.999547 0.0301000i \(-0.00958258\pi\)
\(390\) 0 0
\(391\) −1.01073 6.22749i −0.0511149 0.314938i
\(392\) 0 0
\(393\) −0.702823 + 4.88824i −0.0354527 + 0.246579i
\(394\) 0 0
\(395\) 11.7901 + 3.46188i 0.593223 + 0.174186i
\(396\) 0 0
\(397\) −25.4063 + 7.45996i −1.27511 + 0.374405i −0.848096 0.529843i \(-0.822251\pi\)
−0.427009 + 0.904247i \(0.640433\pi\)
\(398\) 0 0
\(399\) 9.77636 21.4072i 0.489430 1.07170i
\(400\) 0 0
\(401\) 27.9191 17.9425i 1.39421 0.896005i 0.394474 0.918907i \(-0.370927\pi\)
0.999738 + 0.0229020i \(0.00729058\pi\)
\(402\) 0 0
\(403\) 3.58063 + 24.9039i 0.178364 + 1.24055i
\(404\) 0 0
\(405\) −2.38152 + 2.74842i −0.118339 + 0.136570i
\(406\) 0 0
\(407\) 13.2714 + 8.52904i 0.657841 + 0.422769i
\(408\) 0 0
\(409\) −18.9775 21.9012i −0.938379 1.08295i −0.996412 0.0846322i \(-0.973028\pi\)
0.0580335 0.998315i \(-0.481517\pi\)
\(410\) 0 0
\(411\) −8.73753 19.1325i −0.430991 0.943738i
\(412\) 0 0
\(413\) 15.0969 0.742869
\(414\) 0 0
\(415\) −26.1631 −1.28429
\(416\) 0 0
\(417\) −3.54053 7.75269i −0.173381 0.379651i
\(418\) 0 0
\(419\) −1.66642 1.92315i −0.0814099 0.0939520i 0.713583 0.700570i \(-0.247071\pi\)
−0.794993 + 0.606618i \(0.792526\pi\)
\(420\) 0 0
\(421\) 6.57139 + 4.22317i 0.320270 + 0.205825i 0.690890 0.722959i \(-0.257219\pi\)
−0.370621 + 0.928784i \(0.620855\pi\)
\(422\) 0 0
\(423\) 3.32356 3.83559i 0.161597 0.186493i
\(424\) 0 0
\(425\) 1.53995 + 10.7106i 0.0746985 + 0.519539i
\(426\) 0 0
\(427\) 9.75770 6.27090i 0.472208 0.303470i
\(428\) 0 0
\(429\) −6.98871 + 15.3031i −0.337418 + 0.738843i
\(430\) 0 0
\(431\) 2.78212 0.816903i 0.134010 0.0393488i −0.214040 0.976825i \(-0.568662\pi\)
0.348050 + 0.937476i \(0.386844\pi\)
\(432\) 0 0
\(433\) 6.39277 + 1.87709i 0.307217 + 0.0902071i 0.431707 0.902014i \(-0.357911\pi\)
−0.124490 + 0.992221i \(0.539730\pi\)
\(434\) 0 0
\(435\) 3.38251 23.5259i 0.162179 1.12798i
\(436\) 0 0
\(437\) 10.3035 23.6869i 0.492883 1.13310i
\(438\) 0 0
\(439\) 0.604131 4.20183i 0.0288336 0.200542i −0.970313 0.241854i \(-0.922245\pi\)
0.999146 + 0.0413116i \(0.0131536\pi\)
\(440\) 0 0
\(441\) −11.6018 3.40659i −0.552466 0.162219i
\(442\) 0 0
\(443\) 5.27795 1.54975i 0.250763 0.0736307i −0.153935 0.988081i \(-0.549195\pi\)
0.404698 + 0.914450i \(0.367377\pi\)
\(444\) 0 0
\(445\) −14.8203 + 32.4519i −0.702548 + 1.53837i
\(446\) 0 0
\(447\) −2.46287 + 1.58279i −0.116490 + 0.0748635i
\(448\) 0 0
\(449\) −2.33564 16.2447i −0.110226 0.766637i −0.967699 0.252108i \(-0.918876\pi\)
0.857473 0.514529i \(-0.172033\pi\)
\(450\) 0 0
\(451\) −13.9329 + 16.0795i −0.656076 + 0.757152i
\(452\) 0 0
\(453\) 14.9062 + 9.57967i 0.700357 + 0.450092i
\(454\) 0 0
\(455\) −63.9911 73.8497i −2.99995 3.46213i
\(456\) 0 0
\(457\) 11.5754 + 25.3465i 0.541472 + 1.18566i 0.960652 + 0.277756i \(0.0895906\pi\)
−0.419179 + 0.907903i \(0.637682\pi\)
\(458\) 0 0
\(459\) −1.31551 −0.0614029
\(460\) 0 0
\(461\) 27.4201 1.27708 0.638541 0.769588i \(-0.279538\pi\)
0.638541 + 0.769588i \(0.279538\pi\)
\(462\) 0 0
\(463\) 13.8112 + 30.2424i 0.641863 + 1.40548i 0.898499 + 0.438976i \(0.144659\pi\)
−0.256636 + 0.966508i \(0.582614\pi\)
\(464\) 0 0
\(465\) −9.74362 11.2447i −0.451849 0.521462i
\(466\) 0 0
\(467\) −28.7156 18.4544i −1.32880 0.853967i −0.332771 0.943008i \(-0.607984\pi\)
−0.996028 + 0.0890402i \(0.971620\pi\)
\(468\) 0 0
\(469\) −12.6071 + 14.5494i −0.582142 + 0.671828i
\(470\) 0 0
\(471\) 1.00974 + 7.02292i 0.0465265 + 0.323599i
\(472\) 0 0
\(473\) −21.6616 + 13.9211i −0.996003 + 0.640092i
\(474\) 0 0
\(475\) −18.4042 + 40.2996i −0.844443 + 1.84907i
\(476\) 0 0
\(477\) −3.91815 + 1.15047i −0.179400 + 0.0526766i
\(478\) 0 0
\(479\) −27.4641 8.06418i −1.25486 0.368462i −0.414284 0.910148i \(-0.635968\pi\)
−0.840581 + 0.541686i \(0.817786\pi\)
\(480\) 0 0
\(481\) 5.04678 35.1012i 0.230114 1.60047i
\(482\) 0 0
\(483\) −20.2096 5.53882i −0.919568 0.252025i
\(484\) 0 0
\(485\) −1.26790 + 8.81847i −0.0575726 + 0.400426i
\(486\) 0 0
\(487\) −34.1056 10.0143i −1.54547 0.453791i −0.605727 0.795672i \(-0.707118\pi\)
−0.939743 + 0.341881i \(0.888936\pi\)
\(488\) 0 0
\(489\) −0.809527 + 0.237699i −0.0366081 + 0.0107491i
\(490\) 0 0
\(491\) 9.11835 19.9664i 0.411505 0.901071i −0.584468 0.811417i \(-0.698697\pi\)
0.995973 0.0896538i \(-0.0285761\pi\)
\(492\) 0 0
\(493\) 7.23278 4.64822i 0.325748 0.209345i
\(494\) 0 0
\(495\) −1.41588 9.84766i −0.0636391 0.442619i
\(496\) 0 0
\(497\) −29.2677 + 33.7767i −1.31284 + 1.51509i
\(498\) 0 0
\(499\) −10.7906 6.93468i −0.483052 0.310439i 0.276354 0.961056i \(-0.410874\pi\)
−0.759406 + 0.650617i \(0.774510\pi\)
\(500\) 0 0
\(501\) 12.4858 + 14.4094i 0.557825 + 0.643764i
\(502\) 0 0
\(503\) 0.517099 + 1.13229i 0.0230563 + 0.0504863i 0.920810 0.390012i \(-0.127529\pi\)
−0.897754 + 0.440498i \(0.854802\pi\)
\(504\) 0 0
\(505\) 59.8166 2.66180
\(506\) 0 0
\(507\) 24.8171 1.10217
\(508\) 0 0
\(509\) 0.237544 + 0.520148i 0.0105289 + 0.0230552i 0.914823 0.403854i \(-0.132330\pi\)
−0.904294 + 0.426909i \(0.859602\pi\)
\(510\) 0 0
\(511\) −18.5872 21.4508i −0.822249 0.948926i
\(512\) 0 0
\(513\) −4.53107 2.91194i −0.200052 0.128565i
\(514\) 0 0
\(515\) 12.2639 14.1533i 0.540413 0.623670i
\(516\) 0 0
\(517\) 1.97595 + 13.7430i 0.0869021 + 0.604417i
\(518\) 0 0
\(519\) −12.9825 + 8.34333i −0.569867 + 0.366231i
\(520\) 0 0
\(521\) −8.53713 + 18.6937i −0.374018 + 0.818986i 0.625238 + 0.780434i \(0.285002\pi\)
−0.999257 + 0.0385519i \(0.987726\pi\)
\(522\) 0 0
\(523\) −14.8487 + 4.35996i −0.649287 + 0.190648i −0.589759 0.807579i \(-0.700777\pi\)
−0.0595271 + 0.998227i \(0.518959\pi\)
\(524\) 0 0
\(525\) 34.4845 + 10.1256i 1.50503 + 0.441915i
\(526\) 0 0
\(527\) 0.765969 5.32743i 0.0333661 0.232066i
\(528\) 0 0
\(529\) −22.2884 5.67695i −0.969060 0.246824i
\(530\) 0 0
\(531\) 0.491718 3.41998i 0.0213388 0.148414i
\(532\) 0 0
\(533\) 45.8890 + 13.4742i 1.98767 + 0.583634i
\(534\) 0 0
\(535\) 31.6978 9.30733i 1.37042 0.402391i
\(536\) 0 0
\(537\) −5.04991 + 11.0578i −0.217920 + 0.477178i
\(538\) 0 0
\(539\) 27.8279 17.8839i 1.19863 0.770315i
\(540\) 0 0
\(541\) 1.32894 + 9.24297i 0.0571355 + 0.397386i 0.998242 + 0.0592750i \(0.0188789\pi\)
−0.941106 + 0.338111i \(0.890212\pi\)
\(542\) 0 0
\(543\) 4.87996 5.63178i 0.209419 0.241683i
\(544\) 0 0
\(545\) −9.66071 6.20856i −0.413819 0.265945i
\(546\) 0 0
\(547\) 3.42649 + 3.95438i 0.146506 + 0.169077i 0.824259 0.566212i \(-0.191592\pi\)
−0.677753 + 0.735289i \(0.737046\pi\)
\(548\) 0 0
\(549\) −1.10276 2.41471i −0.0470648 0.103057i
\(550\) 0 0
\(551\) 35.2012 1.49962
\(552\) 0 0
\(553\) 14.7635 0.627809
\(554\) 0 0
\(555\) 8.71181 + 19.0762i 0.369796 + 0.809739i
\(556\) 0 0
\(557\) 30.0671 + 34.6992i 1.27398 + 1.47025i 0.812336 + 0.583189i \(0.198195\pi\)
0.461646 + 0.887064i \(0.347259\pi\)
\(558\) 0 0
\(559\) 48.6928 + 31.2930i 2.05949 + 1.32355i
\(560\) 0 0
\(561\) 2.35676 2.71984i 0.0995023 0.114832i
\(562\) 0 0
\(563\) −3.29462 22.9146i −0.138852 0.965734i −0.933478 0.358635i \(-0.883242\pi\)
0.794626 0.607099i \(-0.207667\pi\)
\(564\) 0 0
\(565\) −42.0127 + 26.9999i −1.76749 + 1.13590i
\(566\) 0 0
\(567\) −1.81511 + 3.97454i −0.0762275 + 0.166915i
\(568\) 0 0
\(569\) −4.68564 + 1.37583i −0.196432 + 0.0576777i −0.378469 0.925614i \(-0.623549\pi\)
0.182037 + 0.983292i \(0.441731\pi\)
\(570\) 0 0
\(571\) 18.0598 + 5.30285i 0.755781 + 0.221917i 0.636853 0.770986i \(-0.280236\pi\)
0.118928 + 0.992903i \(0.462054\pi\)
\(572\) 0 0
\(573\) 1.09822 7.63830i 0.0458789 0.319095i
\(574\) 0 0
\(575\) 38.0450 + 10.4269i 1.58659 + 0.434834i
\(576\) 0 0
\(577\) 3.49109 24.2811i 0.145336 1.01083i −0.778390 0.627780i \(-0.783964\pi\)
0.923726 0.383053i \(-0.125127\pi\)
\(578\) 0 0
\(579\) 8.27400 + 2.42947i 0.343856 + 0.100965i
\(580\) 0 0
\(581\) −30.1610 + 8.85606i −1.25129 + 0.367411i
\(582\) 0 0
\(583\) 4.64079 10.1619i 0.192202 0.420864i
\(584\) 0 0
\(585\) −18.8138 + 12.0909i −0.777855 + 0.499897i
\(586\) 0 0
\(587\) 6.71629 + 46.7128i 0.277211 + 1.92804i 0.363122 + 0.931741i \(0.381711\pi\)
−0.0859115 + 0.996303i \(0.527380\pi\)
\(588\) 0 0
\(589\) 14.4307 16.6540i 0.594608 0.686215i
\(590\) 0 0
\(591\) 8.19376 + 5.26581i 0.337046 + 0.216606i
\(592\) 0 0
\(593\) 6.41916 + 7.40810i 0.263603 + 0.304214i 0.872086 0.489353i \(-0.162767\pi\)
−0.608483 + 0.793567i \(0.708222\pi\)
\(594\) 0 0
\(595\) 8.68368 + 19.0146i 0.355996 + 0.779523i
\(596\) 0 0
\(597\) 15.9329 0.652090
\(598\) 0 0
\(599\) −20.6101 −0.842108 −0.421054 0.907036i \(-0.638340\pi\)
−0.421054 + 0.907036i \(0.638340\pi\)
\(600\) 0 0
\(601\) 7.93332 + 17.3716i 0.323607 + 0.708601i 0.999599 0.0283082i \(-0.00901198\pi\)
−0.675992 + 0.736909i \(0.736285\pi\)
\(602\) 0 0
\(603\) 2.88532 + 3.32984i 0.117499 + 0.135602i
\(604\) 0 0
\(605\) −10.7564 6.91269i −0.437308 0.281041i
\(606\) 0 0
\(607\) −9.24220 + 10.6661i −0.375129 + 0.432922i −0.911652 0.410964i \(-0.865192\pi\)
0.536522 + 0.843886i \(0.319738\pi\)
\(608\) 0 0
\(609\) −4.06401 28.2658i −0.164682 1.14539i
\(610\) 0 0
\(611\) 26.2558 16.8736i 1.06220 0.682633i
\(612\) 0 0
\(613\) 19.5194 42.7415i 0.788381 1.72631i 0.107153 0.994243i \(-0.465827\pi\)
0.681228 0.732071i \(-0.261446\pi\)
\(614\) 0 0
\(615\) −27.1375 + 7.96829i −1.09429 + 0.321313i
\(616\) 0 0
\(617\) 20.8751 + 6.12948i 0.840400 + 0.246764i 0.673479 0.739207i \(-0.264799\pi\)
0.166921 + 0.985970i \(0.446617\pi\)
\(618\) 0 0
\(619\) 4.53897 31.5692i 0.182436 1.26887i −0.668542 0.743674i \(-0.733082\pi\)
0.850979 0.525200i \(-0.176009\pi\)
\(620\) 0 0
\(621\) −1.91298 + 4.39778i −0.0767653 + 0.176477i
\(622\) 0 0
\(623\) −6.10013 + 42.4274i −0.244397 + 1.69982i
\(624\) 0 0
\(625\) −1.46901 0.431342i −0.0587606 0.0172537i
\(626\) 0 0
\(627\) 14.1380 4.15128i 0.564615 0.165786i
\(628\) 0 0
\(629\) −3.15136 + 6.90051i −0.125653 + 0.275141i
\(630\) 0 0
\(631\) 5.29849 3.40513i 0.210929 0.135556i −0.430911 0.902395i \(-0.641808\pi\)
0.641840 + 0.766838i \(0.278171\pi\)
\(632\) 0 0
\(633\) −0.736943 5.12555i −0.0292909 0.203722i
\(634\) 0 0
\(635\) −23.3176 + 26.9100i −0.925332 + 1.06789i
\(636\) 0 0
\(637\) −62.5539 40.2009i −2.47847 1.59282i
\(638\) 0 0
\(639\) 6.69835 + 7.73031i 0.264983 + 0.305806i
\(640\) 0 0
\(641\) −11.4982 25.1776i −0.454153 0.994456i −0.988781 0.149369i \(-0.952276\pi\)
0.534628 0.845087i \(-0.320452\pi\)
\(642\) 0 0
\(643\) −27.5964 −1.08830 −0.544148 0.838990i \(-0.683147\pi\)
−0.544148 + 0.838990i \(0.683147\pi\)
\(644\) 0 0
\(645\) −34.2294 −1.34778
\(646\) 0 0
\(647\) −0.127769 0.279774i −0.00502310 0.0109991i 0.907104 0.420907i \(-0.138288\pi\)
−0.912127 + 0.409908i \(0.865561\pi\)
\(648\) 0 0
\(649\) 6.18993 + 7.14356i 0.242976 + 0.280409i
\(650\) 0 0
\(651\) −15.0388 9.66486i −0.589418 0.378796i
\(652\) 0 0
\(653\) −11.3264 + 13.0713i −0.443235 + 0.511520i −0.932774 0.360461i \(-0.882619\pi\)
0.489540 + 0.871981i \(0.337165\pi\)
\(654\) 0 0
\(655\) −2.55594 17.7770i −0.0998690 0.694604i
\(656\) 0 0
\(657\) −5.46476 + 3.51199i −0.213201 + 0.137016i
\(658\) 0 0
\(659\) −6.75581 + 14.7932i −0.263169 + 0.576259i −0.994377 0.105895i \(-0.966229\pi\)
0.731208 + 0.682154i \(0.238957\pi\)
\(660\) 0 0
\(661\) −9.84350 + 2.89031i −0.382868 + 0.112420i −0.467502 0.883992i \(-0.654846\pi\)
0.0846344 + 0.996412i \(0.473028\pi\)
\(662\) 0 0
\(663\) −7.76213 2.27917i −0.301456 0.0885155i
\(664\) 0 0
\(665\) −12.1801 + 84.7144i −0.472324 + 3.28508i
\(666\) 0 0
\(667\) −5.02139 30.9386i −0.194429 1.19795i
\(668\) 0 0
\(669\) −1.84633 + 12.8415i −0.0713834 + 0.496482i
\(670\) 0 0
\(671\) 6.96807 + 2.04601i 0.268999 + 0.0789853i
\(672\) 0 0
\(673\) 25.2947 7.42720i 0.975040 0.286298i 0.244865 0.969557i \(-0.421257\pi\)
0.730175 + 0.683260i \(0.239438\pi\)
\(674\) 0 0
\(675\) 3.41698 7.48215i 0.131520 0.287988i
\(676\) 0 0
\(677\) 5.65459 3.63398i 0.217324 0.139665i −0.427450 0.904039i \(-0.640588\pi\)
0.644774 + 0.764374i \(0.276952\pi\)
\(678\) 0 0
\(679\) 1.52336 + 10.5952i 0.0584611 + 0.406606i
\(680\) 0 0
\(681\) 6.22485 7.18386i 0.238537 0.275286i
\(682\) 0 0
\(683\) −23.4551 15.0737i −0.897485 0.576779i 0.00855822 0.999963i \(-0.497276\pi\)
−0.906043 + 0.423185i \(0.860912\pi\)
\(684\) 0 0
\(685\) 50.0912 + 57.8083i 1.91388 + 2.20874i
\(686\) 0 0
\(687\) 6.85343 + 15.0069i 0.261475 + 0.572549i
\(688\) 0 0
\(689\) −25.1121 −0.956696
\(690\) 0 0
\(691\) 28.7827 1.09495 0.547474 0.836823i \(-0.315590\pi\)
0.547474 + 0.836823i \(0.315590\pi\)
\(692\) 0 0
\(693\) −4.96562 10.8732i −0.188628 0.413039i
\(694\) 0 0
\(695\) 20.2974 + 23.4245i 0.769925 + 0.888541i
\(696\) 0 0
\(697\) −8.60686 5.53129i −0.326008 0.209513i
\(698\) 0 0
\(699\) −1.09864 + 1.26790i −0.0415545 + 0.0479564i
\(700\) 0 0
\(701\) −6.65027 46.2537i −0.251177 1.74698i −0.591168 0.806548i \(-0.701333\pi\)
0.339991 0.940429i \(-0.389576\pi\)
\(702\) 0 0
\(703\) −26.1289 + 16.7920i −0.985471 + 0.633323i
\(704\) 0 0
\(705\) −7.66730 + 16.7890i −0.288767 + 0.632312i
\(706\) 0 0
\(707\) 68.9571 20.2476i 2.59340 0.761490i
\(708\) 0 0
\(709\) 17.0777 + 5.01448i 0.641368 + 0.188323i 0.586215 0.810155i \(-0.300617\pi\)
0.0551526 + 0.998478i \(0.482435\pi\)
\(710\) 0 0
\(711\) 0.480861 3.34446i 0.0180337 0.125427i
\(712\) 0 0
\(713\) −16.6958 10.3076i −0.625264 0.386024i
\(714\) 0 0
\(715\) 8.70704 60.5588i 0.325625 2.26477i
\(716\) 0 0
\(717\) −0.424580 0.124668i −0.0158562 0.00465581i
\(718\) 0 0
\(719\) 25.5241 7.49456i 0.951889 0.279500i 0.231316 0.972879i \(-0.425697\pi\)
0.720573 + 0.693379i \(0.243879\pi\)
\(720\) 0 0
\(721\) 9.34713 20.4674i 0.348105 0.762244i
\(722\) 0 0
\(723\) −24.4631 + 15.7215i −0.909794 + 0.584689i
\(724\) 0 0
\(725\) 7.65058 + 53.2109i 0.284135 + 1.97620i
\(726\) 0 0
\(727\) −17.1268 + 19.7654i −0.635197 + 0.733056i −0.978518 0.206162i \(-0.933903\pi\)
0.343321 + 0.939218i \(0.388448\pi\)
\(728\) 0 0
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) 0 0
\(731\) −8.10845 9.35765i −0.299902 0.346105i
\(732\) 0 0
\(733\) 6.45127 + 14.1263i 0.238283 + 0.521767i 0.990560 0.137080i \(-0.0437717\pi\)
−0.752277 + 0.658847i \(0.771044\pi\)
\(734\) 0 0
\(735\) 43.9733 1.62198
\(736\) 0 0
\(737\) −12.0536 −0.443999
\(738\) 0 0
\(739\) −14.6210 32.0155i −0.537841 1.17771i −0.962233 0.272229i \(-0.912239\pi\)
0.424391 0.905479i \(-0.360488\pi\)
\(740\) 0 0
\(741\) −21.6904 25.0320i −0.796816 0.919574i
\(742\) 0 0
\(743\) −44.9800 28.9069i −1.65016 1.06049i −0.930589 0.366067i \(-0.880704\pi\)
−0.719567 0.694423i \(-0.755660\pi\)
\(744\) 0 0
\(745\) 6.97220 8.04635i 0.255442 0.294795i
\(746\) 0 0
\(747\) 1.02384 + 7.12098i 0.0374604 + 0.260543i
\(748\) 0 0
\(749\) 33.3911 21.4591i 1.22008 0.784100i
\(750\) 0 0
\(751\) −13.7032 + 30.0058i −0.500036 + 1.09493i 0.476422 + 0.879217i \(0.341933\pi\)
−0.976458 + 0.215709i \(0.930794\pi\)
\(752\) 0 0
\(753\) −7.39453 + 2.17123i −0.269472 + 0.0791240i
\(754\) 0 0
\(755\) −61.8285 18.1545i −2.25017 0.660710i
\(756\) 0 0
\(757\) −4.16104 + 28.9407i −0.151236 + 1.05187i 0.762917 + 0.646497i \(0.223767\pi\)
−0.914152 + 0.405371i \(0.867143\pi\)
\(758\) 0 0
\(759\) −5.66535 11.8338i −0.205639 0.429540i
\(760\) 0 0
\(761\) −5.92298 + 41.1953i −0.214708 + 1.49333i 0.542446 + 0.840091i \(0.317498\pi\)
−0.757154 + 0.653236i \(0.773411\pi\)
\(762\) 0 0
\(763\) −13.2385 3.88718i −0.479266 0.140725i
\(764\) 0 0
\(765\) 4.59031 1.34784i 0.165963 0.0487312i
\(766\) 0 0
\(767\) 8.82658 19.3275i 0.318709 0.697876i
\(768\) 0 0
\(769\) 32.5329 20.9076i 1.17317 0.753949i 0.199050 0.979989i \(-0.436215\pi\)
0.974118 + 0.226040i \(0.0725782\pi\)
\(770\) 0 0
\(771\) −2.84792 19.8077i −0.102565 0.713357i
\(772\) 0 0
\(773\) 32.7885 37.8399i 1.17932 1.36101i 0.260916 0.965362i \(-0.415975\pi\)
0.918403 0.395645i \(-0.129479\pi\)
\(774\) 0 0
\(775\) 28.3109 + 18.1943i 1.01696 + 0.653559i
\(776\) 0 0
\(777\) 16.5002 + 19.0423i 0.591943 + 0.683139i
\(778\) 0 0
\(779\) −17.4012 38.1033i −0.623462 1.36519i
\(780\) 0 0
\(781\) −27.9827 −1.00130
\(782\) 0 0
\(783\) −6.53557 −0.233562
\(784\) 0 0
\(785\) −10.7189 23.4710i −0.382572 0.837717i
\(786\) 0 0
\(787\) −22.1767 25.5932i −0.790513 0.912300i 0.207309 0.978276i \(-0.433530\pi\)
−0.997821 + 0.0659755i \(0.978984\pi\)
\(788\) 0 0
\(789\) 10.8503 + 6.97308i 0.386282 + 0.248248i
\(790\) 0 0
\(791\) −39.2933 + 45.3468i −1.39711 + 1.61235i
\(792\) 0 0
\(793\) −2.32324 16.1585i −0.0825007 0.573805i
\(794\) 0