Properties

Label 273.4.a
Level $273$
Weight $4$
Character orbit 273.a
Rep. character $\chi_{273}(1,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $10$
Sturm bound $149$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 273.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(149\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(273))\).

Total New Old
Modular forms 116 36 80
Cusp forms 108 36 72
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(15\)\(3\)\(12\)\(14\)\(3\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(14\)\(6\)\(8\)\(13\)\(6\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(14\)\(4\)\(10\)\(13\)\(4\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(15\)\(5\)\(10\)\(14\)\(5\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(14\)\(5\)\(9\)\(13\)\(5\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(15\)\(6\)\(9\)\(14\)\(6\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(15\)\(6\)\(9\)\(14\)\(6\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(14\)\(1\)\(13\)\(13\)\(1\)\(12\)\(1\)\(0\)\(1\)
Plus space\(+\)\(60\)\(20\)\(40\)\(56\)\(20\)\(36\)\(4\)\(0\)\(4\)
Minus space\(-\)\(56\)\(16\)\(40\)\(52\)\(16\)\(36\)\(4\)\(0\)\(4\)

Trace form

\( 36 q - 4 q^{2} + 140 q^{4} + 24 q^{6} - 28 q^{7} + 36 q^{8} + 324 q^{9} + 48 q^{10} + 40 q^{11} - 24 q^{12} + 140 q^{14} - 120 q^{15} + 820 q^{16} - 128 q^{17} - 36 q^{18} - 128 q^{19} - 84 q^{21} + 320 q^{22}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(273))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 13
273.4.a.a 273.a 1.a $1$ $16.108$ \(\Q\) None 273.4.a.a \(-4\) \(-3\) \(0\) \(-7\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}-3q^{3}+8q^{4}+12q^{6}-7q^{7}+\cdots\)
273.4.a.b 273.a 1.a $1$ $16.108$ \(\Q\) None 273.4.a.b \(-1\) \(3\) \(-5\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}-7q^{4}-5q^{5}-3q^{6}+\cdots\)
273.4.a.c 273.a 1.a $1$ $16.108$ \(\Q\) None 273.4.a.c \(-1\) \(3\) \(9\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}-7q^{4}+9q^{5}-3q^{6}+\cdots\)
273.4.a.d 273.a 1.a $2$ $16.108$ \(\Q(\sqrt{865}) \) None 273.4.a.d \(2\) \(-6\) \(5\) \(-14\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}-7q^{4}+(3-\beta )q^{5}-3q^{6}+\cdots\)
273.4.a.e 273.a 1.a $4$ $16.108$ 4.4.6295500.1 None 273.4.a.e \(-3\) \(-12\) \(-3\) \(28\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-3q^{3}+(3-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
273.4.a.f 273.a 1.a $4$ $16.108$ 4.4.1038472.1 None 273.4.a.f \(-3\) \(12\) \(-24\) \(-28\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+3q^{3}+(4-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
273.4.a.g 273.a 1.a $5$ $16.108$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 273.4.a.g \(5\) \(-15\) \(15\) \(35\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-3q^{3}+(7-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
273.4.a.h 273.a 1.a $6$ $16.108$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 273.4.a.h \(-6\) \(-18\) \(3\) \(-42\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-3q^{3}+(6-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
273.4.a.i 273.a 1.a $6$ $16.108$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 273.4.a.i \(0\) \(18\) \(3\) \(-42\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(7+\beta _{1}+\beta _{2})q^{4}+\cdots\)
273.4.a.j 273.a 1.a $6$ $16.108$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 273.4.a.j \(7\) \(18\) \(-3\) \(42\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+3q^{3}+(4+2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(273))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(273)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)