Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(149\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(273))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 36 | 80 |
Cusp forms | 108 | 36 | 72 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(15\) | \(3\) | \(12\) | \(14\) | \(3\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(14\) | \(6\) | \(8\) | \(13\) | \(6\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(14\) | \(4\) | \(10\) | \(13\) | \(4\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(15\) | \(5\) | \(10\) | \(14\) | \(5\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(14\) | \(5\) | \(9\) | \(13\) | \(5\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(15\) | \(6\) | \(9\) | \(14\) | \(6\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(15\) | \(6\) | \(9\) | \(14\) | \(6\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(14\) | \(1\) | \(13\) | \(13\) | \(1\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(60\) | \(20\) | \(40\) | \(56\) | \(20\) | \(36\) | \(4\) | \(0\) | \(4\) | |||||
Minus space | \(-\) | \(56\) | \(16\) | \(40\) | \(52\) | \(16\) | \(36\) | \(4\) | \(0\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(273))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(273))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(273)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)