Properties

Label 2695.1.ck.c.2034.2
Level $2695$
Weight $1$
Character 2695.2034
Analytic conductor $1.345$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(109,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 40, 21])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 2034.2
Root \(-0.149042 + 0.988831i\) of defining polynomial
Character \(\chi\) \(=\) 2695.2034
Dual form 2695.1.ck.c.1374.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07659 - 0.332083i) q^{2} +(0.222521 - 0.151712i) q^{4} +(0.988831 + 0.149042i) q^{5} +(-0.974928 + 0.222521i) q^{7} +(-0.513267 + 0.643616i) q^{8} +(-0.733052 + 0.680173i) q^{9} +(1.11406 - 0.167917i) q^{10} +(0.733052 + 0.680173i) q^{11} +(-0.302705 + 1.32624i) q^{13} +(-0.975699 + 0.563320i) q^{14} +(-0.437235 + 1.11406i) q^{16} +(0.116853 - 1.55929i) q^{17} +(-0.563320 + 0.975699i) q^{18} +(0.242647 - 0.116853i) q^{20} +(1.01507 + 0.488831i) q^{22} +(0.955573 + 0.294755i) q^{25} +(0.114533 + 1.52833i) q^{26} +(-0.183183 + 0.197424i) q^{28} +(-0.500000 + 0.866025i) q^{31} +(-0.0392431 + 0.523663i) q^{32} +(-0.392012 - 1.71752i) q^{34} +(-0.997204 + 0.0747301i) q^{35} +(-0.0599289 + 0.262566i) q^{36} +(-0.603460 + 0.559929i) q^{40} +(0.367554 + 0.460898i) q^{43} +(0.266310 + 0.0401398i) q^{44} +(-0.826239 + 0.563320i) q^{45} +(0.900969 - 0.433884i) q^{49} +1.12664 q^{50} +(0.133848 + 0.341040i) q^{52} +(0.623490 + 0.781831i) q^{55} +(0.357180 - 0.741692i) q^{56} +(1.44973 - 0.218511i) q^{59} +(-0.250701 + 1.09839i) q^{62} +(0.563320 - 0.826239i) q^{63} +(-0.134659 - 0.589980i) q^{64} +(-0.496990 + 1.26631i) q^{65} +(-0.210561 - 0.364703i) q^{68} +(-1.04876 + 0.411608i) q^{70} +(-1.48883 - 0.716983i) q^{71} +(-0.0615190 - 0.820914i) q^{72} +(1.77904 + 0.548760i) q^{73} +(-0.866025 - 0.500000i) q^{77} +(-0.598393 + 1.03645i) q^{80} +(0.0747301 - 0.997204i) q^{81} +(-0.385418 - 1.68862i) q^{83} +(0.347948 - 1.52446i) q^{85} +(0.548760 + 0.374138i) q^{86} +(-0.814021 + 0.122694i) q^{88} +(1.40097 - 1.29991i) q^{89} +(-0.702449 + 0.880843i) q^{90} -1.36035i q^{91} +(0.825886 - 0.766310i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9} - 2 q^{11} - 6 q^{14} - 26 q^{16} + 8 q^{20} + 2 q^{25} + 6 q^{26} - 12 q^{31} - 14 q^{34} - 8 q^{36} - 18 q^{44} - 2 q^{45} + 4 q^{49} - 4 q^{55} + 14 q^{56} - 2 q^{59}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{8}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07659 0.332083i 1.07659 0.332083i 0.294755 0.955573i \(-0.404762\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(3\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(4\) 0.222521 0.151712i 0.222521 0.151712i
\(5\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(6\) 0 0
\(7\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(8\) −0.513267 + 0.643616i −0.513267 + 0.643616i
\(9\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(10\) 1.11406 0.167917i 1.11406 0.167917i
\(11\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(12\) 0 0
\(13\) −0.302705 + 1.32624i −0.302705 + 1.32624i 0.563320 + 0.826239i \(0.309524\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) −0.975699 + 0.563320i −0.975699 + 0.563320i
\(15\) 0 0
\(16\) −0.437235 + 1.11406i −0.437235 + 1.11406i
\(17\) 0.116853 1.55929i 0.116853 1.55929i −0.563320 0.826239i \(-0.690476\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(18\) −0.563320 + 0.975699i −0.563320 + 0.975699i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0.242647 0.116853i 0.242647 0.116853i
\(21\) 0 0
\(22\) 1.01507 + 0.488831i 1.01507 + 0.488831i
\(23\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(24\) 0 0
\(25\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(26\) 0.114533 + 1.52833i 0.114533 + 1.52833i
\(27\) 0 0
\(28\) −0.183183 + 0.197424i −0.183183 + 0.197424i
\(29\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(32\) −0.0392431 + 0.523663i −0.0392431 + 0.523663i
\(33\) 0 0
\(34\) −0.392012 1.71752i −0.392012 1.71752i
\(35\) −0.997204 + 0.0747301i −0.997204 + 0.0747301i
\(36\) −0.0599289 + 0.262566i −0.0599289 + 0.262566i
\(37\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.603460 + 0.559929i −0.603460 + 0.559929i
\(41\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(42\) 0 0
\(43\) 0.367554 + 0.460898i 0.367554 + 0.460898i 0.930874 0.365341i \(-0.119048\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(44\) 0.266310 + 0.0401398i 0.266310 + 0.0401398i
\(45\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(46\) 0 0
\(47\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(48\) 0 0
\(49\) 0.900969 0.433884i 0.900969 0.433884i
\(50\) 1.12664 1.12664
\(51\) 0 0
\(52\) 0.133848 + 0.341040i 0.133848 + 0.341040i
\(53\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(54\) 0 0
\(55\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(56\) 0.357180 0.741692i 0.357180 0.741692i
\(57\) 0 0
\(58\) 0 0
\(59\) 1.44973 0.218511i 1.44973 0.218511i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(60\) 0 0
\(61\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(62\) −0.250701 + 1.09839i −0.250701 + 1.09839i
\(63\) 0.563320 0.826239i 0.563320 0.826239i
\(64\) −0.134659 0.589980i −0.134659 0.589980i
\(65\) −0.496990 + 1.26631i −0.496990 + 1.26631i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −0.210561 0.364703i −0.210561 0.364703i
\(69\) 0 0
\(70\) −1.04876 + 0.411608i −1.04876 + 0.411608i
\(71\) −1.48883 0.716983i −1.48883 0.716983i −0.500000 0.866025i \(-0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(72\) −0.0615190 0.820914i −0.0615190 0.820914i
\(73\) 1.77904 + 0.548760i 1.77904 + 0.548760i 0.997204 0.0747301i \(-0.0238095\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 0.500000i −0.866025 0.500000i
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) −0.598393 + 1.03645i −0.598393 + 1.03645i
\(81\) 0.0747301 0.997204i 0.0747301 0.997204i
\(82\) 0 0
\(83\) −0.385418 1.68862i −0.385418 1.68862i −0.680173 0.733052i \(-0.738095\pi\)
0.294755 0.955573i \(-0.404762\pi\)
\(84\) 0 0
\(85\) 0.347948 1.52446i 0.347948 1.52446i
\(86\) 0.548760 + 0.374138i 0.548760 + 0.374138i
\(87\) 0 0
\(88\) −0.814021 + 0.122694i −0.814021 + 0.122694i
\(89\) 1.40097 1.29991i 1.40097 1.29991i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(90\) −0.702449 + 0.880843i −0.702449 + 0.880843i
\(91\) 1.36035i 1.36035i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.825886 0.766310i 0.825886 0.766310i
\(99\) −1.00000 −1.00000
\(100\) 0.257353 0.0793829i 0.257353 0.0793829i
\(101\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(102\) 0 0
\(103\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(104\) −0.698220 0.875540i −0.698220 0.875540i
\(105\) 0 0
\(106\) 0 0
\(107\) −0.636119 + 0.590232i −0.636119 + 0.590232i −0.930874 0.365341i \(-0.880952\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(108\) 0 0
\(109\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(110\) 0.930874 + 0.634659i 0.930874 + 0.634659i
\(111\) 0 0
\(112\) 0.178372 1.18342i 0.178372 1.18342i
\(113\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.680173 1.17809i −0.680173 1.17809i
\(118\) 1.48819 0.716677i 1.48819 0.716677i
\(119\) 0.233052 + 1.54620i 0.233052 + 1.54620i
\(120\) 0 0
\(121\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.0201262 + 0.268565i 0.0201262 + 0.268565i
\(125\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(126\) 0.332083 1.07659i 0.332083 1.07659i
\(127\) 0.781831 0.376510i 0.781831 0.376510i 1.00000i \(-0.5\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(128\) −0.603460 1.04522i −0.603460 1.04522i
\(129\) 0 0
\(130\) −0.114533 + 1.52833i −0.114533 + 1.52833i
\(131\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.943608 + 0.875540i 0.943608 + 0.875540i
\(137\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(138\) 0 0
\(139\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(140\) −0.210561 + 0.167917i −0.210561 + 0.167917i
\(141\) 0 0
\(142\) −1.84095 0.277479i −1.84095 0.277479i
\(143\) −1.12397 + 0.766310i −1.12397 + 0.766310i
\(144\) −0.437235 1.11406i −0.437235 1.11406i
\(145\) 0 0
\(146\) 2.09752 2.09752
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(150\) 0 0
\(151\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(152\) 0 0
\(153\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(154\) −1.09839 0.250701i −1.09839 0.250701i
\(155\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(156\) 0 0
\(157\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.116853 + 0.511965i −0.116853 + 0.511965i
\(161\) 0 0
\(162\) −0.250701 1.09839i −0.250701 1.09839i
\(163\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.975699 1.68996i −0.975699 1.68996i
\(167\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(168\) 0 0
\(169\) −0.766310 0.369035i −0.766310 0.369035i
\(170\) −0.131651 1.75676i −0.131651 1.75676i
\(171\) 0 0
\(172\) 0.151712 + 0.0467970i 0.151712 + 0.0467970i
\(173\) −0.149042 1.98883i −0.149042 1.98883i −0.149042 0.988831i \(-0.547619\pi\)
1.00000i \(-0.5\pi\)
\(174\) 0 0
\(175\) −0.997204 0.0747301i −0.997204 0.0747301i
\(176\) −1.07827 + 0.519266i −1.07827 + 0.519266i
\(177\) 0 0
\(178\) 1.07659 1.86470i 1.07659 1.86470i
\(179\) −0.123490 + 1.64786i −0.123490 + 1.64786i 0.500000 + 0.866025i \(0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(180\) −0.0983929 + 0.250701i −0.0983929 + 0.250701i
\(181\) 0.162592 + 0.712362i 0.162592 + 0.712362i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(182\) −0.451748 1.46453i −0.451748 1.46453i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.14625 1.06356i 1.14625 1.06356i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.988831 0.149042i −0.988831 0.149042i −0.365341 0.930874i \(-0.619048\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(192\) 0 0
\(193\) 0.571270 + 1.45557i 0.571270 + 1.45557i 0.866025 + 0.500000i \(0.166667\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.134659 0.233236i 0.134659 0.233236i
\(197\) −1.99441 −1.99441 −0.997204 0.0747301i \(-0.976190\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(198\) −1.07659 + 0.332083i −1.07659 + 0.332083i
\(199\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i 0.955573 0.294755i \(-0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) −0.680173 + 0.463734i −0.680173 + 0.463734i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.34515 0.917109i −1.34515 0.917109i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.488831 + 0.846680i −0.488831 + 0.846680i
\(215\) 0.294755 + 0.510531i 0.294755 + 0.510531i
\(216\) 0 0
\(217\) 0.294755 0.955573i 0.294755 0.955573i
\(218\) 0 0
\(219\) 0 0
\(220\) 0.257353 + 0.0793829i 0.257353 + 0.0793829i
\(221\) 2.03262 + 0.626980i 2.03262 + 0.626980i
\(222\) 0 0
\(223\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(224\) −0.0782667 0.519266i −0.0782667 0.519266i
\(225\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(226\) 0 0
\(227\) 0.149042 0.258149i 0.149042 0.258149i −0.781831 0.623490i \(-0.785714\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(228\) 0 0
\(229\) 0.603718 1.53825i 0.603718 1.53825i −0.222521 0.974928i \(-0.571429\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(234\) −1.12349 1.04245i −1.12349 1.04245i
\(235\) 0 0
\(236\) 0.289444 0.268565i 0.289444 0.268565i
\(237\) 0 0
\(238\) 0.764367 + 1.58722i 0.764367 + 1.58722i
\(239\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(240\) 0 0
\(241\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(242\) 0.411608 + 1.04876i 0.411608 + 1.04876i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.955573 0.294755i 0.955573 0.294755i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.300754 0.766310i −0.300754 0.766310i
\(249\) 0 0
\(250\) 1.11406 + 0.167917i 1.11406 + 0.167917i
\(251\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(252\) 0.269318i 0.269318i
\(253\) 0 0
\(254\) 0.716677 0.664979i 0.716677 0.664979i
\(255\) 0 0
\(256\) −0.553170 0.513267i −0.553170 0.513267i
\(257\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.0815240 + 0.357180i 0.0815240 + 0.357180i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.19158 + 0.367554i 1.19158 + 0.367554i 0.826239 0.563320i \(-0.190476\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(270\) 0 0
\(271\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(272\) 1.68605 + 0.811957i 1.68605 + 0.811957i
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(276\) 0 0
\(277\) 0.139129 1.85654i 0.139129 1.85654i −0.294755 0.955573i \(-0.595238\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(278\) 0 0
\(279\) −0.222521 0.974928i −0.222521 0.974928i
\(280\) 0.463734 0.680173i 0.463734 0.680173i
\(281\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(282\) 0 0
\(283\) 1.42935 + 1.32624i 1.42935 + 1.32624i 0.866025 + 0.500000i \(0.166667\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(284\) −0.440071 + 0.0663300i −0.440071 + 0.0663300i
\(285\) 0 0
\(286\) −0.955573 + 1.19825i −0.955573 + 1.19825i
\(287\) 0 0
\(288\) −0.327414 0.410564i −0.327414 0.410564i
\(289\) −1.42890 0.215372i −1.42890 0.215372i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.479126 0.147791i 0.479126 0.147791i
\(293\) 0.298085 0.298085 0.149042 0.988831i \(-0.452381\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(294\) 0 0
\(295\) 1.46610 1.46610
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.460898 0.367554i −0.460898 0.367554i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 1.45557 + 0.992393i 1.45557 + 0.992393i
\(307\) −0.250701 + 1.09839i −0.250701 + 1.09839i 0.680173 + 0.733052i \(0.261905\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(308\) −0.268565 + 0.0201262i −0.268565 + 0.0201262i
\(309\) 0 0
\(310\) −0.411608 + 1.04876i −0.411608 + 1.04876i
\(311\) −0.147791 + 1.97213i −0.147791 + 1.97213i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) 0.680173 0.733052i 0.680173 0.733052i
\(316\) 0 0
\(317\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.0452231 0.603460i −0.0452231 0.603460i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.134659 0.233236i −0.134659 0.233236i
\(325\) −0.680173 + 1.17809i −0.680173 + 1.17809i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.57906 1.07659i −1.57906 1.07659i −0.955573 0.294755i \(-0.904762\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(332\) −0.341948 0.317282i −0.341948 0.317282i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.848162 + 1.06356i 0.848162 + 1.06356i 0.997204 + 0.0747301i \(0.0238095\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(338\) −0.947549 0.142820i −0.947549 0.142820i
\(339\) 0 0
\(340\) −0.153853 0.392012i −0.153853 0.392012i
\(341\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(342\) 0 0
\(343\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(344\) −0.485294 −0.485294
\(345\) 0 0
\(346\) −0.820914 2.09165i −0.820914 2.09165i
\(347\) 1.64786 1.12349i 1.64786 1.12349i 0.781831 0.623490i \(-0.214286\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(348\) 0 0
\(349\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(350\) −1.09839 + 0.250701i −1.09839 + 0.250701i
\(351\) 0 0
\(352\) −0.384948 + 0.357180i −0.384948 + 0.357180i
\(353\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(354\) 0 0
\(355\) −1.36534 0.930874i −1.36534 0.930874i
\(356\) 0.114533 0.501801i 0.114533 0.501801i
\(357\) 0 0
\(358\) 0.414278 + 1.81507i 0.414278 + 1.81507i
\(359\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(360\) 0.0615190 0.820914i 0.0615190 0.820914i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0.411608 + 0.712926i 0.411608 + 0.712926i
\(363\) 0 0
\(364\) −0.206381 0.302705i −0.206381 0.302705i
\(365\) 1.67738 + 0.807782i 1.67738 + 0.807782i
\(366\) 0 0
\(367\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.149042 + 0.258149i 0.149042 + 0.258149i 0.930874 0.365341i \(-0.119048\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(374\) 0.880843 1.52566i 0.880843 1.52566i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.440071 1.92808i 0.440071 1.92808i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.11406 + 0.167917i −1.11406 + 0.167917i
\(383\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(384\) 0 0
\(385\) −0.781831 0.623490i −0.781831 0.623490i
\(386\) 1.09839 + 1.37734i 1.09839 + 1.37734i
\(387\) −0.582926 0.0878620i −0.582926 0.0878620i
\(388\) 0 0
\(389\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.183183 + 0.802576i −0.183183 + 0.802576i
\(393\) 0 0
\(394\) −2.14715 + 0.662309i −2.14715 + 0.662309i
\(395\) 0 0
\(396\) −0.222521 + 0.151712i −0.222521 + 0.151712i
\(397\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(398\) 0.104988 + 0.131651i 0.104988 + 0.131651i
\(399\) 0 0
\(400\) −0.746184 + 0.935685i −0.746184 + 0.935685i
\(401\) 1.40097 1.29991i 1.40097 1.29991i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(402\) 0 0
\(403\) −0.997204 0.925270i −0.997204 0.925270i
\(404\) 0 0
\(405\) 0.222521 0.974928i 0.222521 0.974928i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.36476 + 0.535628i −1.36476 + 0.535628i
\(414\) 0 0
\(415\) −0.129436 1.72721i −0.129436 1.72721i
\(416\) −0.682623 0.210561i −0.682623 0.210561i
\(417\) 0 0
\(418\) 0 0
\(419\) −1.32091 0.636119i −1.32091 0.636119i −0.365341 0.930874i \(-0.619048\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(420\) 0 0
\(421\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.571270 1.45557i 0.571270 1.45557i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.0520043 + 0.227846i −0.0520043 + 0.227846i
\(429\) 0 0
\(430\) 0.486868 + 0.451748i 0.486868 + 0.451748i
\(431\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(432\) 0 0
\(433\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(434\) 1.12664i 1.12664i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(440\) −0.823216 −0.823216
\(441\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(442\) 2.39650 2.39650
\(443\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(444\) 0 0
\(445\) 1.57906 1.07659i 1.57906 1.07659i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.262566 + 0.545223i 0.262566 + 0.545223i
\(449\) 0.914101 1.14625i 0.914101 1.14625i −0.0747301 0.997204i \(-0.523810\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(450\) −0.825886 + 0.766310i −0.825886 + 0.766310i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.0747301 0.327414i 0.0747301 0.327414i
\(455\) 0.202749 1.34515i 0.202749 1.34515i
\(456\) 0 0
\(457\) −0.632789 + 1.61232i −0.632789 + 1.61232i 0.149042 + 0.988831i \(0.452381\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(458\) 0.139129 1.85654i 0.139129 1.85654i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(462\) 0 0
\(463\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(468\) −0.330084 0.158960i −0.330084 0.158960i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.603460 + 1.04522i −0.603460 + 1.04522i
\(473\) −0.0440542 + 0.587862i −0.0440542 + 0.587862i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.286436 + 0.308705i 0.286436 + 0.308705i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.167917 + 0.210561i 0.167917 + 0.210561i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.930874 0.634659i 0.930874 0.634659i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.988831 0.149042i −0.988831 0.149042i
\(496\) −0.746184 0.935685i −0.746184 0.935685i
\(497\) 1.61105 + 0.367711i 1.61105 + 0.367711i
\(498\) 0 0
\(499\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(500\) 0.266310 0.0401398i 0.266310 0.0401398i
\(501\) 0 0
\(502\) −1.67738 1.14362i −1.67738 1.14362i
\(503\) 0.385418 1.68862i 0.385418 1.68862i −0.294755 0.955573i \(-0.595238\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(504\) 0.242647 + 0.786643i 0.242647 + 0.786643i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0.116853 0.202395i 0.116853 0.202395i
\(509\) 0.988831 + 1.71271i 0.988831 + 1.71271i 0.623490 + 0.781831i \(0.285714\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(510\) 0 0
\(511\) −1.85654 0.139129i −1.85654 0.139129i
\(512\) 0.321415 + 0.154785i 0.321415 + 0.154785i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.559929 0.969825i −0.559929 0.969825i
\(521\) 0.826239 1.43109i 0.826239 1.43109i −0.0747301 0.997204i \(-0.523810\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(522\) 0 0
\(523\) 0.215372 0.548760i 0.215372 0.548760i −0.781831 0.623490i \(-0.785714\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.434227 + 1.90247i −0.434227 + 1.90247i
\(527\) 1.29196 + 0.880843i 1.29196 + 0.880843i
\(528\) 0 0
\(529\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(530\) 0 0
\(531\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.716983 + 0.488831i −0.716983 + 0.488831i
\(536\) 0 0
\(537\) 0 0
\(538\) 1.40490 1.40490
\(539\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(540\) 0 0
\(541\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.811957 + 0.122383i 0.811957 + 0.122383i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.16078 + 1.45557i −1.16078 + 1.45557i −0.294755 + 0.955573i \(0.595238\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0.825886 + 0.766310i 0.825886 + 0.766310i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.466742 2.04493i −0.466742 2.04493i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.974928 + 1.68862i −0.974928 + 1.68862i −0.294755 + 0.955573i \(0.595238\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(558\) −0.563320 0.975699i −0.563320 0.975699i
\(559\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(560\) 0.352759 1.14362i 0.352759 1.14362i
\(561\) 0 0
\(562\) 0 0
\(563\) 1.90580 + 0.587862i 1.90580 + 0.587862i 0.974928 + 0.222521i \(0.0714286\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.97924 + 0.953150i 1.97924 + 0.953150i
\(567\) 0.149042 + 0.988831i 0.149042 + 0.988831i
\(568\) 1.22563 0.590232i 1.22563 0.590232i
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(572\) −0.133848 + 0.341040i −0.133848 + 0.341040i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 0.340894i 0.500000 + 0.340894i
\(577\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(578\) −1.60986 + 0.242647i −1.60986 + 0.242647i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.751509 + 1.56052i 0.751509 + 1.56052i
\(582\) 0 0
\(583\) 0 0
\(584\) −1.26631 + 0.863355i −1.26631 + 0.863355i
\(585\) −0.496990 1.26631i −0.496990 1.26631i
\(586\) 0.320914 0.0989888i 0.320914 0.0989888i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.57839 0.486868i 1.57839 0.486868i
\(591\) 0 0
\(592\) 0 0
\(593\) −0.582926 0.0878620i −0.582926 0.0878620i −0.149042 0.988831i \(-0.547619\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(594\) 0 0
\(595\) 1.56366i 1.56366i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.44973 1.34515i −1.44973 1.34515i −0.826239 0.563320i \(-0.809524\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(600\) 0 0
\(601\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(602\) −0.618255 0.242647i −0.618255 0.242647i
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(606\) 0 0
\(607\) −0.149042 0.258149i −0.149042 0.258149i 0.781831 0.623490i \(-0.214286\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.402413 + 0.124128i 0.402413 + 0.124128i
\(613\) 1.90580 + 0.587862i 1.90580 + 0.587862i 0.974928 + 0.222521i \(0.0714286\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(614\) 0.0948562 + 1.26577i 0.0948562 + 1.26577i
\(615\) 0 0
\(616\) 0.766310 0.300754i 0.766310 0.300754i
\(617\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(618\) 0 0
\(619\) −0.222521 + 0.385418i −0.222521 + 0.385418i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(620\) −0.0201262 + 0.268565i −0.0201262 + 0.268565i
\(621\) 0 0
\(622\) 0.495802 + 2.17225i 0.495802 + 2.17225i
\(623\) −1.07659 + 1.57906i −1.07659 + 1.57906i
\(624\) 0 0
\(625\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.488831 1.01507i 0.488831 1.01507i
\(631\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.829215 0.255779i 0.829215 0.255779i
\(636\) 0 0
\(637\) 0.302705 + 1.32624i 0.302705 + 1.32624i
\(638\) 0 0
\(639\) 1.57906 0.487076i 1.57906 0.487076i
\(640\) −0.440937 1.12349i −0.440937 1.12349i
\(641\) 1.48883 1.01507i 1.48883 1.01507i 0.500000 0.866025i \(-0.333333\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(642\) 0 0
\(643\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(648\) 0.603460 + 0.559929i 0.603460 + 0.559929i
\(649\) 1.21135 + 0.825886i 1.21135 + 0.825886i
\(650\) −0.341040 + 1.49419i −0.341040 + 1.49419i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.67738 + 0.807782i −1.67738 + 0.807782i
\(658\) 0 0
\(659\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(660\) 0 0
\(661\) −1.72188 0.531130i −1.72188 0.531130i −0.733052 0.680173i \(-0.761905\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(662\) −2.05751 0.634659i −2.05751 0.634659i
\(663\) 0 0
\(664\) 1.28465 + 0.618654i 1.28465 + 0.618654i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.385418 + 1.68862i −0.385418 + 1.68862i 0.294755 + 0.955573i \(0.404762\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(674\) 1.26631 + 0.863355i 1.26631 + 0.863355i
\(675\) 0 0
\(676\) −0.226507 + 0.0341405i −0.226507 + 0.0341405i
\(677\) 1.42935 1.32624i 1.42935 1.32624i 0.563320 0.826239i \(-0.309524\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.802576 + 1.00640i 0.802576 + 1.00640i
\(681\) 0 0
\(682\) −0.930874 + 0.634659i −0.930874 + 0.634659i
\(683\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.634659 + 0.930874i −0.634659 + 0.930874i
\(687\) 0 0
\(688\) −0.674173 + 0.207955i −0.674173 + 0.207955i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.23305 0.185853i −1.23305 0.185853i −0.500000 0.866025i \(-0.666667\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(692\) −0.334895 0.419945i −0.334895 0.419945i
\(693\) 0.974928 0.222521i 0.974928 0.222521i
\(694\) 1.40097 1.75676i 1.40097 1.75676i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.233236 + 0.134659i −0.233236 + 0.134659i
\(701\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.302576 0.524077i 0.302576 0.524077i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i 0.900969 + 0.433884i \(0.142857\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(710\) −1.77904 0.548760i −1.77904 0.548760i
\(711\) 0 0
\(712\) 0.117572 + 1.56889i 0.117572 + 1.56889i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.22563 + 0.590232i −1.22563 + 0.590232i
\(716\) 0.222521 + 0.385418i 0.222521 + 0.385418i
\(717\) 0 0
\(718\) 0 0
\(719\) −0.455573 + 1.16078i −0.455573 + 1.16078i 0.500000 + 0.866025i \(0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(720\) −0.266310 1.16678i −0.266310 1.16678i
\(721\) 0 0
\(722\) −0.250701 + 1.09839i −0.250701 + 1.09839i
\(723\) 0 0
\(724\) 0.144254 + 0.133848i 0.144254 + 0.133848i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(728\) 0.875540 + 0.698220i 0.875540 + 0.698220i
\(729\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(730\) 2.07409 + 0.312619i 2.07409 + 0.312619i
\(731\) 0.761623 0.519266i 0.761623 0.519266i
\(732\) 0 0
\(733\) −0.829215 + 0.255779i −0.829215 + 0.255779i −0.680173 0.733052i \(-0.738095\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.848162 1.06356i 0.848162 1.06356i −0.149042 0.988831i \(-0.547619\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.246184 + 0.228425i 0.246184 + 0.228425i
\(747\) 1.43109 + 0.975699i 1.43109 + 0.975699i
\(748\) 0.0937086 0.410564i 0.0937086 0.410564i
\(749\) 0.488831 0.716983i 0.488831 0.716983i
\(750\) 0 0
\(751\) 0.266948 0.680173i 0.266948 0.680173i −0.733052 0.680173i \(-0.761905\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(758\) −0.166507 2.22188i −0.166507 2.22188i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.242647 + 0.116853i −0.242647 + 0.116853i
\(765\) 0.781831 + 1.35417i 0.781831 + 1.35417i
\(766\) 0 0
\(767\) −0.149042 + 1.98883i −0.149042 + 1.98883i
\(768\) 0 0
\(769\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(770\) −1.04876 0.411608i −1.04876 0.411608i
\(771\) 0 0
\(772\) 0.347948 + 0.237227i 0.347948 + 0.237227i
\(773\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(774\) −0.656748 + 0.0989888i −0.656748 + 0.0989888i
\(775\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(776\) 0 0
\(777\) 0 0
\(778\) −1.38921 1.74201i −1.38921 1.74201i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.603718 1.53825i −0.603718 1.53825i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.0894359 + 1.19344i 0.0894359 + 1.19344i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.728639 1.85654i −0.728639 1.85654i −0.433884 0.900969i \(-0.642857\pi\)
−0.294755 0.955573i \(-0.595238\pi\)
\(788\) −0.443797 + 0.302576i −0.443797 + 0.302576i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.513267 0.643616i 0.513267 0.643616i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.0332580 + 0.0226749i 0.0332580 + 0.0226749i
\(797\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.191852 + 0.488831i −0.191852 + 0.488831i
\(801\) −0.142820 + 1.90580i −0.142820 + 1.90580i
\(802\) 1.07659 1.86470i 1.07659 1.86470i
\(803\) 0.930874 + 1.61232i 0.930874 + 1.61232i
\(804\) 0 0
\(805\) 0 0
\(806\) −1.38084 0.664979i −1.38084 0.664979i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(810\) −0.0841939 1.12349i −0.0841939 1.12349i
\(811\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.925270 + 0.997204i 0.925270 + 0.997204i
\(820\) 0 0
\(821\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(822\) 0 0
\(823\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.29141 + 1.02986i −1.29141 + 1.02986i
\(827\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 1.21135 0.825886i 1.21135 0.825886i 0.222521 0.974928i \(-0.428571\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(830\) −0.712926 1.81651i −0.712926 1.81651i
\(831\) 0 0
\(832\) 0.823216 0.823216
\(833\) −0.571270 1.45557i −0.571270 1.45557i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.63332 0.246184i −1.63332 0.246184i
\(839\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(840\) 0 0
\(841\) 0.623490 0.781831i 0.623490 0.781831i
\(842\) 1.02986 0.955573i 1.02986 0.955573i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.702749 0.479126i −0.702749 0.479126i
\(846\) 0 0
\(847\) −0.294755 0.955573i −0.294755 0.955573i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.131651 1.75676i 0.131651 1.75676i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.781831 + 0.376510i −0.781831 + 0.376510i −0.781831 0.623490i \(-0.785714\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.0533842 0.712362i −0.0533842 0.712362i
\(857\) 1.07659 + 0.332083i 1.07659 + 0.332083i 0.781831 0.623490i \(-0.214286\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(858\) 0 0
\(859\) −0.0931869 1.24349i −0.0931869 1.24349i −0.826239 0.563320i \(-0.809524\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(860\) 0.143043 + 0.0688859i 0.143043 + 0.0688859i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 0 0
\(865\) 0.149042 1.98883i 0.149042 1.98883i
\(866\) 0 0
\(867\) 0 0
\(868\) −0.0793829 0.257353i −0.0793829 0.257353i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.974928 0.222521i −0.974928 0.222521i
\(876\) 0 0
\(877\) −1.71271 0.258149i −1.71271 0.258149i −0.781831 0.623490i \(-0.785714\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −1.14362 + 0.352759i −1.14362 + 0.352759i
\(881\) 0.149460 0.149460 0.0747301 0.997204i \(-0.476190\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(882\) −0.0841939 + 1.12349i −0.0841939 + 1.12349i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0.547421 0.168857i 0.547421 0.168857i
\(885\) 0 0
\(886\) 0 0
\(887\) 1.84095 + 0.277479i 1.84095 + 0.277479i 0.974928 0.222521i \(-0.0714286\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) −0.678448 + 0.541044i −0.678448 + 0.541044i
\(890\) 1.34248 1.68342i 1.34248 1.68342i
\(891\) 0.733052 0.680173i 0.733052 0.680173i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(896\) 0.820914 + 0.884735i 0.820914 + 0.884735i
\(897\) 0 0
\(898\) 0.603460 1.53759i 0.603460 1.53759i
\(899\) 0 0
\(900\) −0.134659 + 0.233236i −0.134659 + 0.233236i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i
\(906\) 0 0
\(907\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(908\) −0.00599930 0.0800550i −0.00599930 0.0800550i
\(909\) 0 0
\(910\) −0.228425 1.51550i −0.228425 1.51550i
\(911\) 0.134659 0.0648483i 0.134659 0.0648483i −0.365341 0.930874i \(-0.619048\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) 0 0
\(913\) 0.866025 1.50000i 0.866025 1.50000i
\(914\) −0.145828 + 1.94594i −0.145828 + 1.94594i
\(915\) 0 0
\(916\) −0.0990311 0.433884i −0.0990311 0.433884i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.40157 1.75751i 1.40157 1.75751i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.72188 + 0.531130i −1.72188 + 0.531130i −0.988831 0.149042i \(-0.952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.29196 0.880843i 1.29196 0.880843i
\(936\) 1.10735 + 0.166906i 1.10735 + 0.166906i
\(937\) −0.848162 1.06356i −0.848162 1.06356i −0.997204 0.0747301i \(-0.976190\pi\)
0.149042 0.988831i \(-0.452381\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.390438 + 1.71062i −0.390438 + 1.71062i
\(945\) 0 0
\(946\) 0.147791 + 0.647514i 0.147791 + 0.647514i
\(947\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(948\) 0 0
\(949\) −1.26631 + 2.19331i −1.26631 + 2.19331i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.11478 0.643616i −1.11478 0.643616i
\(953\) −1.75676 0.846011i −1.75676 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
−0.781831 0.623490i \(-0.785714\pi\)
\(954\) 0 0
\(955\) −0.955573 0.294755i −0.955573 0.294755i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0.0648483 0.865341i 0.0648483 0.865341i
\(964\) 0 0
\(965\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(966\) 0 0
\(967\) 0.414278 1.81507i 0.414278 1.81507i −0.149042 0.988831i \(-0.547619\pi\)
0.563320 0.826239i \(-0.309524\pi\)
\(968\) −0.680173 0.463734i −0.680173 0.463734i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.109562 0.101659i 0.109562 0.101659i −0.623490 0.781831i \(-0.714286\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(978\) 0 0
\(979\) 1.91115 1.91115
\(980\) 0.167917 0.210561i 0.167917 0.210561i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(984\) 0 0
\(985\) −1.97213 0.297251i −1.97213 0.297251i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.11406 + 0.167917i −1.11406 + 0.167917i
\(991\) 0.914101 + 0.848162i 0.914101 + 0.848162i 0.988831 0.149042i \(-0.0476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(992\) −0.433884 0.295817i −0.433884 0.295817i
\(993\) 0 0
\(994\) 1.85654 0.139129i 1.85654 0.139129i
\(995\) 0.0332580 + 0.145713i 0.0332580 + 0.145713i
\(996\) 0 0
\(997\) 0.0440542 0.587862i 0.0440542 0.587862i −0.930874 0.365341i \(-0.880952\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(998\) −1.07659 + 1.86470i −1.07659 + 1.86470i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.c.2034.2 yes 24
5.4 even 2 inner 2695.1.ck.c.2034.1 yes 24
11.10 odd 2 inner 2695.1.ck.c.2034.1 yes 24
49.2 even 21 inner 2695.1.ck.c.1374.2 yes 24
55.54 odd 2 CM 2695.1.ck.c.2034.2 yes 24
245.149 even 42 inner 2695.1.ck.c.1374.1 24
539.296 odd 42 inner 2695.1.ck.c.1374.1 24
2695.1374 odd 42 inner 2695.1.ck.c.1374.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.c.1374.1 24 245.149 even 42 inner
2695.1.ck.c.1374.1 24 539.296 odd 42 inner
2695.1.ck.c.1374.2 yes 24 49.2 even 21 inner
2695.1.ck.c.1374.2 yes 24 2695.1374 odd 42 inner
2695.1.ck.c.2034.1 yes 24 5.4 even 2 inner
2695.1.ck.c.2034.1 yes 24 11.10 odd 2 inner
2695.1.ck.c.2034.2 yes 24 1.1 even 1 trivial
2695.1.ck.c.2034.2 yes 24 55.54 odd 2 CM