Properties

Label 2664.2.hc
Level $2664$
Weight $2$
Character orbit 2664.hc
Rep. character $\chi_{2664}(19,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $2256$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.hc (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 296 \)
Character field: \(\Q(\zeta_{36})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).

Total New Old
Modular forms 5568 2304 3264
Cusp forms 5376 2256 3120
Eisenstein series 192 48 144

Trace form

\( 2256 q + 12 q^{2} - 18 q^{4} + 18 q^{8} - 6 q^{10} + 36 q^{11} + 12 q^{14} - 6 q^{16} + 24 q^{17} - 24 q^{19} + 12 q^{20} - 24 q^{22} - 12 q^{25} + 6 q^{26} - 12 q^{28} + 42 q^{32} - 12 q^{34} + 24 q^{35}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2664, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(888, [\chi])\)\(^{\oplus 2}\)