Defining parameters
Level: | \( N \) | \(=\) | \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2664.hc (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 296 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Sturm bound: | \(912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5568 | 2304 | 3264 |
Cusp forms | 5376 | 2256 | 3120 |
Eisenstein series | 192 | 48 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2664, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(888, [\chi])\)\(^{\oplus 2}\)