Properties

Label 266.2.k
Level $266$
Weight $2$
Character orbit 266.k
Rep. character $\chi_{266}(145,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $2$
Sturm bound $80$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 266 = 2 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 266.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(266, [\chi])\).

Total New Old
Modular forms 88 24 64
Cusp forms 72 24 48
Eisenstein series 16 0 16

Trace form

\( 24 q - 24 q^{4} - 2 q^{7} - 8 q^{9} - 6 q^{13} + 30 q^{15} + 24 q^{16} + 24 q^{17} - 12 q^{19} + 18 q^{22} + 10 q^{23} - 12 q^{25} - 12 q^{26} + 2 q^{28} - 18 q^{29} - 8 q^{30} - 6 q^{31} - 12 q^{34} - 8 q^{35}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(266, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
266.2.k.a 266.k 133.i $4$ $2.124$ \(\Q(\zeta_{12})\) None 266.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}^{3}q^{2}+(\zeta_{12}-2\zeta_{12}^{3})q^{3}-q^{4}+\cdots\)
266.2.k.b 266.k 133.i $20$ $2.124$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 266.2.k.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{2}+\beta _{9}q^{3}-q^{4}+(-\beta _{2}+\beta _{8}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(266, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(266, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)