Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.p (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 264 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 100 | 0 |
Cusp forms | 92 | 92 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(264, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
264.3.p.a | $2$ | $7.193$ | \(\Q(\sqrt{22}) \) | \(\Q(\sqrt{-66}) \) | \(-4\) | \(-6\) | \(0\) | \(0\) | \(q-2q^{2}-3q^{3}+4q^{4}+\beta q^{5}+6q^{6}+\cdots\) |
264.3.p.b | $2$ | $7.193$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(-4\) | \(2\) | \(0\) | \(0\) | \(q-2q^{2}+(1+\beta )q^{3}+4q^{4}+(-2-2\beta )q^{6}+\cdots\) |
264.3.p.c | $2$ | $7.193$ | \(\Q(\sqrt{3}) \) | \(\Q(\sqrt{-66}) \) | \(-4\) | \(6\) | \(0\) | \(0\) | \(q-2q^{2}+3q^{3}+4q^{4}+\beta q^{5}-6q^{6}+\cdots\) |
264.3.p.d | $2$ | $7.193$ | \(\Q(\sqrt{22}) \) | \(\Q(\sqrt{-66}) \) | \(4\) | \(-6\) | \(0\) | \(0\) | \(q+2q^{2}-3q^{3}+4q^{4}+\beta q^{5}-6q^{6}+\cdots\) |
264.3.p.e | $2$ | $7.193$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(4\) | \(2\) | \(0\) | \(0\) | \(q+2q^{2}+(1+\beta )q^{3}+4q^{4}+(2+2\beta )q^{6}+\cdots\) |
264.3.p.f | $2$ | $7.193$ | \(\Q(\sqrt{3}) \) | \(\Q(\sqrt{-66}) \) | \(4\) | \(6\) | \(0\) | \(0\) | \(q+2q^{2}+3q^{3}+4q^{4}+\beta q^{5}+6q^{6}+\cdots\) |
264.3.p.g | $80$ | $7.193$ | None | \(0\) | \(-8\) | \(0\) | \(0\) |