Properties

Label 264.3.p
Level $264$
Weight $3$
Character orbit 264.p
Rep. character $\chi_{264}(131,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $7$
Sturm bound $144$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 264.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(144\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(264, [\chi])\).

Total New Old
Modular forms 100 100 0
Cusp forms 92 92 0
Eisenstein series 8 8 0

Trace form

\( 92 q - 4 q^{3} - 4 q^{4} - 4 q^{9} - 20 q^{12} - 28 q^{16} - 84 q^{22} + 372 q^{25} - 4 q^{27} + 8 q^{33} - 104 q^{34} + 68 q^{36} + 24 q^{42} - 60 q^{48} + 468 q^{49} - 96 q^{58} - 112 q^{60} + 68 q^{64}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
264.3.p.a 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{22}) \) \(\Q(\sqrt{-66}) \) 264.3.p.a \(-4\) \(-6\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}-3q^{3}+4q^{4}+\beta q^{5}+6q^{6}+\cdots\)
264.3.p.b 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 264.3.p.b \(-4\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+(1+\beta )q^{3}+4q^{4}+(-2-2\beta )q^{6}+\cdots\)
264.3.p.c 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{3}) \) \(\Q(\sqrt{-66}) \) 264.3.p.c \(-4\) \(6\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+3q^{3}+4q^{4}+\beta q^{5}-6q^{6}+\cdots\)
264.3.p.d 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{22}) \) \(\Q(\sqrt{-66}) \) 264.3.p.a \(4\) \(-6\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}-3q^{3}+4q^{4}+\beta q^{5}-6q^{6}+\cdots\)
264.3.p.e 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 264.3.p.b \(4\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+(1+\beta )q^{3}+4q^{4}+(2+2\beta )q^{6}+\cdots\)
264.3.p.f 264.p 264.p $2$ $7.193$ \(\Q(\sqrt{3}) \) \(\Q(\sqrt{-66}) \) 264.3.p.c \(4\) \(6\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+3q^{3}+4q^{4}+\beta q^{5}+6q^{6}+\cdots\)
264.3.p.g 264.p 264.p $80$ $7.193$ None 264.3.p.g \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$