Properties

Label 264.2.m
Level $264$
Weight $2$
Character orbit 264.m
Rep. character $\chi_{264}(197,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(264, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 4 q^{4} - 4 q^{9} + 4 q^{12} - 16 q^{15} + 4 q^{16} + 12 q^{22} + 20 q^{25} - 8 q^{31} - 12 q^{33} - 24 q^{34} - 36 q^{36} - 24 q^{42} - 28 q^{48} - 28 q^{49} - 8 q^{55} + 48 q^{58} - 24 q^{60} - 28 q^{64}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
264.2.m.a 264.m 264.m $4$ $2.108$ \(\Q(\sqrt{-2}, \sqrt{3})\) \(\Q(\sqrt{-6}) \) 264.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}-\beta _{2}q^{3}-2q^{4}+2\beta _{2}q^{5}+\cdots\)
264.2.m.b 264.m 264.m $40$ $2.108$ None 264.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$