Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 12 | 44 |
Cusp forms | 40 | 12 | 28 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(264, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
264.2.b.a | $6$ | $2.108$ | 6.0.7388168.1 | None | \(0\) | \(1\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(\beta _{1}+\beta _{3}-\beta _{4})q^{7}+\cdots\) |
264.2.b.b | $6$ | $2.108$ | 6.0.7388168.1 | None | \(0\) | \(1\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(-\beta _{1}-\beta _{3}+\beta _{4}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(264, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)