Properties

Label 264.2.b
Level $264$
Weight $2$
Character orbit 264.b
Rep. character $\chi_{264}(65,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $96$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(264, [\chi])\).

Total New Old
Modular forms 56 12 44
Cusp forms 40 12 28
Eisenstein series 16 0 16

Trace form

\( 12 q + 2 q^{3} + 6 q^{9} - 6 q^{15} + 8 q^{25} - 4 q^{27} + 12 q^{31} - 10 q^{33} - 12 q^{37} - 2 q^{45} - 4 q^{49} - 4 q^{55} - 44 q^{67} - 34 q^{69} - 40 q^{75} + 22 q^{81} - 24 q^{91} + 2 q^{93} - 52 q^{97}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
264.2.b.a 264.b 33.d $6$ $2.108$ 6.0.7388168.1 None 264.2.b.a \(0\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(\beta _{1}+\beta _{3}-\beta _{4})q^{7}+\cdots\)
264.2.b.b 264.b 33.d $6$ $2.108$ 6.0.7388168.1 None 264.2.b.a \(0\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(-\beta _{1}-\beta _{3}+\beta _{4}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(264, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)