Properties

Label 2600.2.eg
Level $2600$
Weight $2$
Character orbit 2600.eg
Rep. character $\chi_{2600}(183,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $0$
Newform subspaces $0$
Sturm bound $840$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.eg (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 0 \)
Sturm bound: \(840\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 3424 0 3424
Cusp forms 3296 0 3296
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)