Properties

Label 260.2.z.a.69.1
Level $260$
Weight $2$
Character 260.69
Analytic conductor $2.076$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 7x^{14} + 21x^{12} - 22x^{10} - 26x^{8} - 198x^{6} + 1701x^{4} - 5103x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 69.1
Root \(-0.517063 + 1.65307i\) of defining polynomial
Character \(\chi\) \(=\) 260.69
Dual form 260.2.z.a.49.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.86320 - 1.65307i) q^{3} +(0.877236 - 2.05681i) q^{5} +(-0.517063 - 0.895580i) q^{7} +(3.96529 + 6.86809i) q^{9} +O(q^{10})\) \(q+(-2.86320 - 1.65307i) q^{3} +(0.877236 - 2.05681i) q^{5} +(-0.517063 - 0.895580i) q^{7} +(3.96529 + 6.86809i) q^{9} +(-2.96091 - 1.70948i) q^{11} +(-3.57672 + 0.455025i) q^{13} +(-5.91176 + 4.43893i) q^{15} +(-2.07508 + 1.19805i) q^{17} +(-5.37246 + 3.10179i) q^{19} +3.41897i q^{21} +(6.28304 + 3.62751i) q^{23} +(-3.46091 - 3.60861i) q^{25} -16.3012i q^{27} +(0.902796 - 1.56369i) q^{29} -5.80053i q^{31} +(5.65180 + 9.78921i) q^{33} +(-2.29562 + 0.277865i) q^{35} +(0.713520 - 1.23585i) q^{37} +(10.9931 + 4.60975i) q^{39} +(-3.60158 - 2.07937i) q^{41} +(-1.86864 + 1.07886i) q^{43} +(17.6048 - 2.13091i) q^{45} -3.50894 q^{47} +(2.96529 - 5.13604i) q^{49} +7.92183 q^{51} -4.55382i q^{53} +(-6.11350 + 4.59041i) q^{55} +20.5099 q^{57} +(-5.06250 + 2.92283i) q^{59} +(-1.90280 - 3.29574i) q^{61} +(4.10061 - 7.10247i) q^{63} +(-2.20173 + 7.75580i) q^{65} +(3.80822 - 6.59603i) q^{67} +(-11.9931 - 20.7726i) q^{69} +(9.49745 - 5.48336i) q^{71} -7.15345 q^{73} +(3.94401 + 16.0533i) q^{75} +3.53565i q^{77} -12.8524 q^{79} +(-15.0512 + 26.0694i) q^{81} +0.706694 q^{83} +(0.643819 + 5.31901i) q^{85} +(-5.16978 + 2.98477i) q^{87} +(5.06250 + 2.92283i) q^{89} +(2.25690 + 2.96796i) q^{91} +(-9.58870 + 16.6081i) q^{93} +(1.66687 + 13.7711i) q^{95} +(-7.99794 - 13.8528i) q^{97} -27.1144i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 10 q^{9} - 6 q^{11} + 6 q^{15} - 18 q^{19} - 14 q^{25} + 12 q^{29} + 18 q^{39} - 48 q^{41} + 45 q^{45} - 6 q^{49} + 44 q^{51} + 2 q^{55} - 30 q^{59} - 28 q^{61} - 15 q^{65} - 34 q^{69} - 18 q^{71} - 42 q^{75} - 16 q^{79} - 44 q^{81} - 45 q^{85} + 30 q^{89} - 10 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.86320 1.65307i −1.65307 0.954401i −0.975799 0.218669i \(-0.929828\pi\)
−0.677273 0.735732i \(-0.736838\pi\)
\(4\) 0 0
\(5\) 0.877236 2.05681i 0.392312 0.919832i
\(6\) 0 0
\(7\) −0.517063 0.895580i −0.195432 0.338497i 0.751610 0.659607i \(-0.229277\pi\)
−0.947042 + 0.321110i \(0.895944\pi\)
\(8\) 0 0
\(9\) 3.96529 + 6.86809i 1.32176 + 2.28936i
\(10\) 0 0
\(11\) −2.96091 1.70948i −0.892749 0.515429i −0.0179086 0.999840i \(-0.505701\pi\)
−0.874841 + 0.484411i \(0.839034\pi\)
\(12\) 0 0
\(13\) −3.57672 + 0.455025i −0.992005 + 0.126201i
\(14\) 0 0
\(15\) −5.91176 + 4.43893i −1.52641 + 1.14613i
\(16\) 0 0
\(17\) −2.07508 + 1.19805i −0.503280 + 0.290569i −0.730067 0.683375i \(-0.760511\pi\)
0.226787 + 0.973944i \(0.427178\pi\)
\(18\) 0 0
\(19\) −5.37246 + 3.10179i −1.23253 + 0.711600i −0.967556 0.252656i \(-0.918696\pi\)
−0.264972 + 0.964256i \(0.585363\pi\)
\(20\) 0 0
\(21\) 3.41897i 0.746080i
\(22\) 0 0
\(23\) 6.28304 + 3.62751i 1.31010 + 0.756389i 0.982113 0.188292i \(-0.0602952\pi\)
0.327991 + 0.944681i \(0.393629\pi\)
\(24\) 0 0
\(25\) −3.46091 3.60861i −0.692183 0.721722i
\(26\) 0 0
\(27\) 16.3012i 3.13717i
\(28\) 0 0
\(29\) 0.902796 1.56369i 0.167645 0.290370i −0.769946 0.638109i \(-0.779717\pi\)
0.937591 + 0.347739i \(0.113050\pi\)
\(30\) 0 0
\(31\) 5.80053i 1.04181i −0.853616 0.520903i \(-0.825595\pi\)
0.853616 0.520903i \(-0.174405\pi\)
\(32\) 0 0
\(33\) 5.65180 + 9.78921i 0.983852 + 1.70408i
\(34\) 0 0
\(35\) −2.29562 + 0.277865i −0.388031 + 0.0469677i
\(36\) 0 0
\(37\) 0.713520 1.23585i 0.117302 0.203173i −0.801396 0.598135i \(-0.795909\pi\)
0.918698 + 0.394962i \(0.129242\pi\)
\(38\) 0 0
\(39\) 10.9931 + 4.60975i 1.76030 + 0.738151i
\(40\) 0 0
\(41\) −3.60158 2.07937i −0.562472 0.324744i 0.191665 0.981460i \(-0.438611\pi\)
−0.754137 + 0.656717i \(0.771945\pi\)
\(42\) 0 0
\(43\) −1.86864 + 1.07886i −0.284965 + 0.164525i −0.635669 0.771962i \(-0.719276\pi\)
0.350704 + 0.936486i \(0.385942\pi\)
\(44\) 0 0
\(45\) 17.6048 2.13091i 2.62437 0.317657i
\(46\) 0 0
\(47\) −3.50894 −0.511832 −0.255916 0.966699i \(-0.582377\pi\)
−0.255916 + 0.966699i \(0.582377\pi\)
\(48\) 0 0
\(49\) 2.96529 5.13604i 0.423613 0.733719i
\(50\) 0 0
\(51\) 7.92183 1.10928
\(52\) 0 0
\(53\) 4.55382i 0.625515i −0.949833 0.312757i \(-0.898747\pi\)
0.949833 0.312757i \(-0.101253\pi\)
\(54\) 0 0
\(55\) −6.11350 + 4.59041i −0.824344 + 0.618971i
\(56\) 0 0
\(57\) 20.5099 2.71661
\(58\) 0 0
\(59\) −5.06250 + 2.92283i −0.659081 + 0.380520i −0.791927 0.610616i \(-0.790922\pi\)
0.132846 + 0.991137i \(0.457588\pi\)
\(60\) 0 0
\(61\) −1.90280 3.29574i −0.243628 0.421976i 0.718117 0.695922i \(-0.245004\pi\)
−0.961745 + 0.273946i \(0.911671\pi\)
\(62\) 0 0
\(63\) 4.10061 7.10247i 0.516629 0.894827i
\(64\) 0 0
\(65\) −2.20173 + 7.75580i −0.273091 + 0.961988i
\(66\) 0 0
\(67\) 3.80822 6.59603i 0.465248 0.805833i −0.533965 0.845507i \(-0.679298\pi\)
0.999213 + 0.0396734i \(0.0126318\pi\)
\(68\) 0 0
\(69\) −11.9931 20.7726i −1.44380 2.50073i
\(70\) 0 0
\(71\) 9.49745 5.48336i 1.12714 0.650755i 0.183926 0.982940i \(-0.441119\pi\)
0.943214 + 0.332185i \(0.107786\pi\)
\(72\) 0 0
\(73\) −7.15345 −0.837248 −0.418624 0.908160i \(-0.637487\pi\)
−0.418624 + 0.908160i \(0.637487\pi\)
\(74\) 0 0
\(75\) 3.94401 + 16.0533i 0.455415 + 1.85368i
\(76\) 0 0
\(77\) 3.53565i 0.402924i
\(78\) 0 0
\(79\) −12.8524 −1.44601 −0.723005 0.690843i \(-0.757240\pi\)
−0.723005 + 0.690843i \(0.757240\pi\)
\(80\) 0 0
\(81\) −15.0512 + 26.0694i −1.67236 + 2.89660i
\(82\) 0 0
\(83\) 0.706694 0.0775698 0.0387849 0.999248i \(-0.487651\pi\)
0.0387849 + 0.999248i \(0.487651\pi\)
\(84\) 0 0
\(85\) 0.643819 + 5.31901i 0.0698320 + 0.576927i
\(86\) 0 0
\(87\) −5.16978 + 2.98477i −0.554258 + 0.320001i
\(88\) 0 0
\(89\) 5.06250 + 2.92283i 0.536623 + 0.309820i 0.743709 0.668503i \(-0.233065\pi\)
−0.207086 + 0.978323i \(0.566398\pi\)
\(90\) 0 0
\(91\) 2.25690 + 2.96796i 0.236588 + 0.311127i
\(92\) 0 0
\(93\) −9.58870 + 16.6081i −0.994302 + 1.72218i
\(94\) 0 0
\(95\) 1.66687 + 13.7711i 0.171018 + 1.41289i
\(96\) 0 0
\(97\) −7.99794 13.8528i −0.812068 1.40654i −0.911414 0.411490i \(-0.865008\pi\)
0.0993461 0.995053i \(-0.468325\pi\)
\(98\) 0 0
\(99\) 27.1144i 2.72510i
\(100\) 0 0
\(101\) 2.99562 5.18857i 0.298076 0.516282i −0.677620 0.735412i \(-0.736989\pi\)
0.975696 + 0.219130i \(0.0703219\pi\)
\(102\) 0 0
\(103\) 11.7096i 1.15378i −0.816822 0.576890i \(-0.804266\pi\)
0.816822 0.576890i \(-0.195734\pi\)
\(104\) 0 0
\(105\) 7.03216 + 2.99924i 0.686269 + 0.292696i
\(106\) 0 0
\(107\) 11.7452 + 6.78110i 1.13545 + 0.655554i 0.945300 0.326201i \(-0.105769\pi\)
0.190152 + 0.981755i \(0.439102\pi\)
\(108\) 0 0
\(109\) 1.39533i 0.133648i 0.997765 + 0.0668240i \(0.0212866\pi\)
−0.997765 + 0.0668240i \(0.978713\pi\)
\(110\) 0 0
\(111\) −4.08591 + 2.35900i −0.387817 + 0.223906i
\(112\) 0 0
\(113\) −3.65133 + 2.10810i −0.343488 + 0.198313i −0.661813 0.749669i \(-0.730213\pi\)
0.318325 + 0.947982i \(0.396880\pi\)
\(114\) 0 0
\(115\) 12.9728 9.74081i 1.20972 0.908336i
\(116\) 0 0
\(117\) −17.3079 22.7609i −1.60012 2.10425i
\(118\) 0 0
\(119\) 2.14589 + 1.23893i 0.196714 + 0.113573i
\(120\) 0 0
\(121\) 0.344677 + 0.596999i 0.0313343 + 0.0542726i
\(122\) 0 0
\(123\) 6.87471 + 11.9073i 0.619871 + 1.07365i
\(124\) 0 0
\(125\) −10.4583 + 3.95283i −0.935415 + 0.353552i
\(126\) 0 0
\(127\) −5.16978 2.98477i −0.458744 0.264856i 0.252772 0.967526i \(-0.418658\pi\)
−0.711516 + 0.702670i \(0.751991\pi\)
\(128\) 0 0
\(129\) 7.13374 0.628091
\(130\) 0 0
\(131\) 19.0556 1.66489 0.832447 0.554105i \(-0.186940\pi\)
0.832447 + 0.554105i \(0.186940\pi\)
\(132\) 0 0
\(133\) 5.55581 + 3.20765i 0.481750 + 0.278138i
\(134\) 0 0
\(135\) −33.5285 14.3000i −2.88567 1.23075i
\(136\) 0 0
\(137\) −0.231497 0.400964i −0.0197781 0.0342567i 0.855967 0.517031i \(-0.172963\pi\)
−0.875745 + 0.482774i \(0.839629\pi\)
\(138\) 0 0
\(139\) 4.65970 + 8.07084i 0.395231 + 0.684559i 0.993131 0.117011i \(-0.0373314\pi\)
−0.597900 + 0.801571i \(0.703998\pi\)
\(140\) 0 0
\(141\) 10.0468 + 5.80053i 0.846095 + 0.488493i
\(142\) 0 0
\(143\) 11.3682 + 4.76707i 0.950659 + 0.398642i
\(144\) 0 0
\(145\) −2.42424 3.22860i −0.201322 0.268121i
\(146\) 0 0
\(147\) −16.9805 + 9.80368i −1.40053 + 0.808594i
\(148\) 0 0
\(149\) −9.44524 + 5.45321i −0.773784 + 0.446744i −0.834223 0.551427i \(-0.814083\pi\)
0.0604387 + 0.998172i \(0.480750\pi\)
\(150\) 0 0
\(151\) 4.85943i 0.395455i 0.980257 + 0.197727i \(0.0633561\pi\)
−0.980257 + 0.197727i \(0.936644\pi\)
\(152\) 0 0
\(153\) −16.4566 9.50121i −1.33044 0.768127i
\(154\) 0 0
\(155\) −11.9306 5.08844i −0.958287 0.408713i
\(156\) 0 0
\(157\) 8.80782i 0.702940i 0.936199 + 0.351470i \(0.114318\pi\)
−0.936199 + 0.351470i \(0.885682\pi\)
\(158\) 0 0
\(159\) −7.52779 + 13.0385i −0.596992 + 1.03402i
\(160\) 0 0
\(161\) 7.50261i 0.591289i
\(162\) 0 0
\(163\) −9.30996 16.1253i −0.729212 1.26303i −0.957217 0.289372i \(-0.906553\pi\)
0.228004 0.973660i \(-0.426780\pi\)
\(164\) 0 0
\(165\) 25.0925 3.03723i 1.95345 0.236448i
\(166\) 0 0
\(167\) −7.18849 + 12.4508i −0.556262 + 0.963474i 0.441542 + 0.897240i \(0.354432\pi\)
−0.997804 + 0.0662334i \(0.978902\pi\)
\(168\) 0 0
\(169\) 12.5859 3.25499i 0.968147 0.250384i
\(170\) 0 0
\(171\) −42.6068 24.5990i −3.25822 1.88113i
\(172\) 0 0
\(173\) 18.9947 10.9666i 1.44414 0.833773i 0.446014 0.895026i \(-0.352843\pi\)
0.998122 + 0.0612532i \(0.0195097\pi\)
\(174\) 0 0
\(175\) −1.44229 + 4.96540i −0.109027 + 0.375349i
\(176\) 0 0
\(177\) 19.3266 1.45268
\(178\) 0 0
\(179\) −5.06250 + 8.76850i −0.378389 + 0.655388i −0.990828 0.135129i \(-0.956855\pi\)
0.612439 + 0.790518i \(0.290188\pi\)
\(180\) 0 0
\(181\) 0.272578 0.0202606 0.0101303 0.999949i \(-0.496775\pi\)
0.0101303 + 0.999949i \(0.496775\pi\)
\(182\) 0 0
\(183\) 12.5818i 0.930076i
\(184\) 0 0
\(185\) −1.91599 2.55171i −0.140866 0.187605i
\(186\) 0 0
\(187\) 8.19217 0.599071
\(188\) 0 0
\(189\) −14.5990 + 8.42876i −1.06192 + 0.613102i
\(190\) 0 0
\(191\) 7.39587 + 12.8100i 0.535147 + 0.926901i 0.999156 + 0.0410710i \(0.0130770\pi\)
−0.464010 + 0.885830i \(0.653590\pi\)
\(192\) 0 0
\(193\) −3.50212 + 6.06585i −0.252088 + 0.436629i −0.964101 0.265538i \(-0.914451\pi\)
0.712013 + 0.702167i \(0.247784\pi\)
\(194\) 0 0
\(195\) 19.1249 18.5668i 1.36956 1.32960i
\(196\) 0 0
\(197\) 4.81643 8.34230i 0.343157 0.594365i −0.641861 0.766821i \(-0.721837\pi\)
0.985017 + 0.172457i \(0.0551705\pi\)
\(198\) 0 0
\(199\) 1.96091 + 3.39640i 0.139006 + 0.240765i 0.927120 0.374763i \(-0.122276\pi\)
−0.788115 + 0.615528i \(0.788943\pi\)
\(200\) 0 0
\(201\) −21.8074 + 12.5905i −1.53818 + 0.888067i
\(202\) 0 0
\(203\) −1.86721 −0.131052
\(204\) 0 0
\(205\) −7.43631 + 5.58366i −0.519374 + 0.389980i
\(206\) 0 0
\(207\) 57.5366i 3.99907i
\(208\) 0 0
\(209\) 21.2099 1.46712
\(210\) 0 0
\(211\) 7.29429 12.6341i 0.502160 0.869766i −0.497837 0.867271i \(-0.665872\pi\)
0.999997 0.00249580i \(-0.000794440\pi\)
\(212\) 0 0
\(213\) −36.2575 −2.48433
\(214\) 0 0
\(215\) 0.579770 + 4.78986i 0.0395400 + 0.326665i
\(216\) 0 0
\(217\) −5.19484 + 2.99924i −0.352649 + 0.203602i
\(218\) 0 0
\(219\) 20.4818 + 11.8252i 1.38403 + 0.799070i
\(220\) 0 0
\(221\) 6.87684 5.22929i 0.462586 0.351760i
\(222\) 0 0
\(223\) 1.50165 2.60093i 0.100558 0.174171i −0.811357 0.584551i \(-0.801271\pi\)
0.911915 + 0.410380i \(0.134604\pi\)
\(224\) 0 0
\(225\) 11.0607 38.0791i 0.737381 2.53860i
\(226\) 0 0
\(227\) −5.84058 10.1162i −0.387653 0.671435i 0.604480 0.796620i \(-0.293381\pi\)
−0.992133 + 0.125185i \(0.960047\pi\)
\(228\) 0 0
\(229\) 18.5293i 1.22445i 0.790684 + 0.612224i \(0.209725\pi\)
−0.790684 + 0.612224i \(0.790275\pi\)
\(230\) 0 0
\(231\) 5.84468 10.1233i 0.384552 0.666063i
\(232\) 0 0
\(233\) 11.1750i 0.732097i −0.930596 0.366048i \(-0.880710\pi\)
0.930596 0.366048i \(-0.119290\pi\)
\(234\) 0 0
\(235\) −3.07817 + 7.21722i −0.200798 + 0.470800i
\(236\) 0 0
\(237\) 36.7991 + 21.2460i 2.39036 + 1.38007i
\(238\) 0 0
\(239\) 2.16507i 0.140047i −0.997545 0.0700235i \(-0.977693\pi\)
0.997545 0.0700235i \(-0.0223074\pi\)
\(240\) 0 0
\(241\) 16.7318 9.66011i 1.07779 0.622262i 0.147491 0.989063i \(-0.452880\pi\)
0.930299 + 0.366801i \(0.119547\pi\)
\(242\) 0 0
\(243\) 43.8375 25.3096i 2.81218 1.62361i
\(244\) 0 0
\(245\) −7.96258 10.6045i −0.508710 0.677500i
\(246\) 0 0
\(247\) 17.8044 13.5389i 1.13287 0.861457i
\(248\) 0 0
\(249\) −2.02341 1.16822i −0.128228 0.0740327i
\(250\) 0 0
\(251\) −3.87684 6.71488i −0.244704 0.423840i 0.717344 0.696719i \(-0.245357\pi\)
−0.962048 + 0.272879i \(0.912024\pi\)
\(252\) 0 0
\(253\) −12.4024 21.4815i −0.779730 1.35053i
\(254\) 0 0
\(255\) 6.94931 16.2937i 0.435183 1.02035i
\(256\) 0 0
\(257\) −15.4216 8.90366i −0.961973 0.555395i −0.0651933 0.997873i \(-0.520766\pi\)
−0.896780 + 0.442477i \(0.854100\pi\)
\(258\) 0 0
\(259\) −1.47574 −0.0916980
\(260\) 0 0
\(261\) 14.3194 0.886348
\(262\) 0 0
\(263\) 14.3815 + 8.30316i 0.886801 + 0.511995i 0.872895 0.487908i \(-0.162240\pi\)
0.0139065 + 0.999903i \(0.495573\pi\)
\(264\) 0 0
\(265\) −9.36633 3.99477i −0.575369 0.245397i
\(266\) 0 0
\(267\) −9.66330 16.7373i −0.591385 1.02431i
\(268\) 0 0
\(269\) −2.96967 5.14362i −0.181064 0.313612i 0.761179 0.648542i \(-0.224621\pi\)
−0.942243 + 0.334930i \(0.891287\pi\)
\(270\) 0 0
\(271\) −8.37246 4.83384i −0.508591 0.293635i 0.223663 0.974666i \(-0.428198\pi\)
−0.732254 + 0.681031i \(0.761532\pi\)
\(272\) 0 0
\(273\) −1.55572 12.2287i −0.0941562 0.740115i
\(274\) 0 0
\(275\) 4.07861 + 16.6012i 0.245949 + 1.00109i
\(276\) 0 0
\(277\) −17.9423 + 10.3590i −1.07805 + 0.622411i −0.930369 0.366624i \(-0.880513\pi\)
−0.147679 + 0.989035i \(0.547180\pi\)
\(278\) 0 0
\(279\) 39.8386 23.0008i 2.38507 1.37702i
\(280\) 0 0
\(281\) 27.7700i 1.65662i −0.560272 0.828309i \(-0.689303\pi\)
0.560272 0.828309i \(-0.310697\pi\)
\(282\) 0 0
\(283\) 22.1502 + 12.7885i 1.31670 + 0.760194i 0.983196 0.182556i \(-0.0584370\pi\)
0.333500 + 0.942750i \(0.391770\pi\)
\(284\) 0 0
\(285\) 17.9921 42.1850i 1.06576 2.49882i
\(286\) 0 0
\(287\) 4.30067i 0.253861i
\(288\) 0 0
\(289\) −5.62937 + 9.75035i −0.331139 + 0.573550i
\(290\) 0 0
\(291\) 52.8847i 3.10016i
\(292\) 0 0
\(293\) 14.1987 + 24.5929i 0.829497 + 1.43673i 0.898434 + 0.439109i \(0.144706\pi\)
−0.0689370 + 0.997621i \(0.521961\pi\)
\(294\) 0 0
\(295\) 1.57070 + 12.9766i 0.0914499 + 0.755526i
\(296\) 0 0
\(297\) −27.8667 + 48.2665i −1.61699 + 2.80071i
\(298\) 0 0
\(299\) −24.1233 10.1157i −1.39509 0.585005i
\(300\) 0 0
\(301\) 1.93241 + 1.11568i 0.111382 + 0.0643067i
\(302\) 0 0
\(303\) −17.1542 + 9.90396i −0.985481 + 0.568968i
\(304\) 0 0
\(305\) −8.44790 + 1.02254i −0.483726 + 0.0585507i
\(306\) 0 0
\(307\) 11.5519 0.659302 0.329651 0.944103i \(-0.393069\pi\)
0.329651 + 0.944103i \(0.393069\pi\)
\(308\) 0 0
\(309\) −19.3568 + 33.5269i −1.10117 + 1.90728i
\(310\) 0 0
\(311\) −1.03807 −0.0588634 −0.0294317 0.999567i \(-0.509370\pi\)
−0.0294317 + 0.999567i \(0.509370\pi\)
\(312\) 0 0
\(313\) 29.6339i 1.67501i 0.546432 + 0.837504i \(0.315986\pi\)
−0.546432 + 0.837504i \(0.684014\pi\)
\(314\) 0 0
\(315\) −11.0112 14.6647i −0.620411 0.826263i
\(316\) 0 0
\(317\) 20.4445 1.14828 0.574138 0.818759i \(-0.305337\pi\)
0.574138 + 0.818759i \(0.305337\pi\)
\(318\) 0 0
\(319\) −5.34620 + 3.08663i −0.299330 + 0.172818i
\(320\) 0 0
\(321\) −22.4193 38.8313i −1.25132 2.16735i
\(322\) 0 0
\(323\) 7.43219 12.8729i 0.413538 0.716269i
\(324\) 0 0
\(325\) 14.0207 + 11.3322i 0.777731 + 0.628597i
\(326\) 0 0
\(327\) 2.30657 3.99510i 0.127554 0.220930i
\(328\) 0 0
\(329\) 1.81435 + 3.14254i 0.100028 + 0.173254i
\(330\) 0 0
\(331\) 4.39587 2.53796i 0.241619 0.139499i −0.374302 0.927307i \(-0.622118\pi\)
0.615921 + 0.787808i \(0.288784\pi\)
\(332\) 0 0
\(333\) 11.3173 0.620182
\(334\) 0 0
\(335\) −10.2261 13.6191i −0.558709 0.744088i
\(336\) 0 0
\(337\) 10.4909i 0.571473i 0.958308 + 0.285737i \(0.0922382\pi\)
−0.958308 + 0.285737i \(0.907762\pi\)
\(338\) 0 0
\(339\) 13.9393 0.757081
\(340\) 0 0
\(341\) −9.91593 + 17.1749i −0.536977 + 0.930072i
\(342\) 0 0
\(343\) −13.3719 −0.722012
\(344\) 0 0
\(345\) −53.2460 + 6.44497i −2.86667 + 0.346985i
\(346\) 0 0
\(347\) −27.6247 + 15.9491i −1.48297 + 0.856193i −0.999813 0.0193399i \(-0.993844\pi\)
−0.483158 + 0.875533i \(0.660510\pi\)
\(348\) 0 0
\(349\) −28.4661 16.4349i −1.52376 0.879741i −0.999605 0.0281153i \(-0.991049\pi\)
−0.524151 0.851625i \(-0.675617\pi\)
\(350\) 0 0
\(351\) 7.41745 + 58.3049i 0.395914 + 3.11209i
\(352\) 0 0
\(353\) 13.6825 23.6988i 0.728245 1.26136i −0.229379 0.973337i \(-0.573670\pi\)
0.957624 0.288021i \(-0.0929971\pi\)
\(354\) 0 0
\(355\) −2.94671 24.3446i −0.156395 1.29208i
\(356\) 0 0
\(357\) −4.09609 7.09463i −0.216788 0.375488i
\(358\) 0 0
\(359\) 0.625579i 0.0330168i 0.999864 + 0.0165084i \(0.00525502\pi\)
−0.999864 + 0.0165084i \(0.994745\pi\)
\(360\) 0 0
\(361\) 9.74225 16.8741i 0.512750 0.888109i
\(362\) 0 0
\(363\) 2.27911i 0.119622i
\(364\) 0 0
\(365\) −6.27526 + 14.7133i −0.328462 + 0.770127i
\(366\) 0 0
\(367\) 3.44490 + 1.98891i 0.179822 + 0.103820i 0.587209 0.809435i \(-0.300227\pi\)
−0.407387 + 0.913256i \(0.633560\pi\)
\(368\) 0 0
\(369\) 32.9813i 1.71694i
\(370\) 0 0
\(371\) −4.07831 + 2.35461i −0.211735 + 0.122245i
\(372\) 0 0
\(373\) −24.4645 + 14.1246i −1.26672 + 0.731343i −0.974367 0.224966i \(-0.927773\pi\)
−0.292357 + 0.956309i \(0.594440\pi\)
\(374\) 0 0
\(375\) 36.4784 + 5.97048i 1.88374 + 0.308314i
\(376\) 0 0
\(377\) −2.51754 + 6.00368i −0.129660 + 0.309205i
\(378\) 0 0
\(379\) −14.1642 8.17771i −0.727567 0.420061i 0.0899646 0.995945i \(-0.471325\pi\)
−0.817531 + 0.575884i \(0.804658\pi\)
\(380\) 0 0
\(381\) 9.86809 + 17.0920i 0.505557 + 0.875651i
\(382\) 0 0
\(383\) −10.4332 18.0708i −0.533111 0.923376i −0.999252 0.0386654i \(-0.987689\pi\)
0.466141 0.884710i \(-0.345644\pi\)
\(384\) 0 0
\(385\) 7.27215 + 3.10160i 0.370623 + 0.158072i
\(386\) 0 0
\(387\) −14.8194 8.55600i −0.753314 0.434926i
\(388\) 0 0
\(389\) −3.54177 −0.179575 −0.0897874 0.995961i \(-0.528619\pi\)
−0.0897874 + 0.995961i \(0.528619\pi\)
\(390\) 0 0
\(391\) −17.3837 −0.879133
\(392\) 0 0
\(393\) −54.5600 31.5002i −2.75219 1.58898i
\(394\) 0 0
\(395\) −11.2746 + 26.4349i −0.567286 + 1.33009i
\(396\) 0 0
\(397\) 13.8394 + 23.9705i 0.694578 + 1.20305i 0.970323 + 0.241814i \(0.0777424\pi\)
−0.275744 + 0.961231i \(0.588924\pi\)
\(398\) 0 0
\(399\) −10.6049 18.3683i −0.530911 0.919565i
\(400\) 0 0
\(401\) 10.6799 + 6.16604i 0.533328 + 0.307917i 0.742371 0.669989i \(-0.233701\pi\)
−0.209043 + 0.977907i \(0.567035\pi\)
\(402\) 0 0
\(403\) 2.63939 + 20.7469i 0.131477 + 1.03348i
\(404\) 0 0
\(405\) 40.4164 + 53.8265i 2.00831 + 2.67466i
\(406\) 0 0
\(407\) −4.22534 + 2.43950i −0.209442 + 0.120922i
\(408\) 0 0
\(409\) 31.2917 18.0663i 1.54728 0.893321i 0.548929 0.835869i \(-0.315036\pi\)
0.998348 0.0574521i \(-0.0182976\pi\)
\(410\) 0 0
\(411\) 1.53072i 0.0755049i
\(412\) 0 0
\(413\) 5.23526 + 3.02258i 0.257610 + 0.148731i
\(414\) 0 0
\(415\) 0.619938 1.45353i 0.0304315 0.0713512i
\(416\) 0 0
\(417\) 30.8113i 1.50883i
\(418\) 0 0
\(419\) 6.26566 10.8524i 0.306097 0.530176i −0.671408 0.741088i \(-0.734310\pi\)
0.977505 + 0.210912i \(0.0676434\pi\)
\(420\) 0 0
\(421\) 7.74907i 0.377667i −0.982009 0.188833i \(-0.939529\pi\)
0.982009 0.188833i \(-0.0604706\pi\)
\(422\) 0 0
\(423\) −13.9140 24.0997i −0.676521 1.17177i
\(424\) 0 0
\(425\) 11.5050 + 3.34181i 0.558072 + 0.162102i
\(426\) 0 0
\(427\) −1.96773 + 3.40821i −0.0952252 + 0.164935i
\(428\) 0 0
\(429\) −24.6693 32.4416i −1.19104 1.56629i
\(430\) 0 0
\(431\) −18.9375 10.9336i −0.912188 0.526652i −0.0310532 0.999518i \(-0.509886\pi\)
−0.881134 + 0.472866i \(0.843219\pi\)
\(432\) 0 0
\(433\) 0.219232 0.126574i 0.0105356 0.00608275i −0.494723 0.869051i \(-0.664730\pi\)
0.505259 + 0.862968i \(0.331397\pi\)
\(434\) 0 0
\(435\) 1.60399 + 13.2516i 0.0769054 + 0.635365i
\(436\) 0 0
\(437\) −45.0072 −2.15299
\(438\) 0 0
\(439\) 6.98432 12.0972i 0.333344 0.577368i −0.649822 0.760087i \(-0.725156\pi\)
0.983165 + 0.182719i \(0.0584897\pi\)
\(440\) 0 0
\(441\) 47.0330 2.23967
\(442\) 0 0
\(443\) 28.5957i 1.35862i −0.733851 0.679310i \(-0.762279\pi\)
0.733851 0.679310i \(-0.237721\pi\)
\(444\) 0 0
\(445\) 10.4527 7.84856i 0.495506 0.372058i
\(446\) 0 0
\(447\) 36.0582 1.70549
\(448\) 0 0
\(449\) 15.7293 9.08129i 0.742309 0.428572i −0.0805990 0.996747i \(-0.525683\pi\)
0.822908 + 0.568174i \(0.192350\pi\)
\(450\) 0 0
\(451\) 7.10932 + 12.3137i 0.334765 + 0.579829i
\(452\) 0 0
\(453\) 8.03298 13.9135i 0.377422 0.653715i
\(454\) 0 0
\(455\) 8.08437 2.03841i 0.379001 0.0955621i
\(456\) 0 0
\(457\) 4.53992 7.86337i 0.212368 0.367833i −0.740087 0.672511i \(-0.765216\pi\)
0.952455 + 0.304678i \(0.0985490\pi\)
\(458\) 0 0
\(459\) 19.5296 + 33.8263i 0.911564 + 1.57888i
\(460\) 0 0
\(461\) −32.7734 + 18.9217i −1.52641 + 0.881273i −0.526900 + 0.849927i \(0.676646\pi\)
−0.999509 + 0.0313456i \(0.990021\pi\)
\(462\) 0 0
\(463\) −15.5694 −0.723570 −0.361785 0.932262i \(-0.617833\pi\)
−0.361785 + 0.932262i \(0.617833\pi\)
\(464\) 0 0
\(465\) 25.7481 + 34.2913i 1.19404 + 1.59022i
\(466\) 0 0
\(467\) 4.19255i 0.194008i −0.995284 0.0970040i \(-0.969074\pi\)
0.995284 0.0970040i \(-0.0309260\pi\)
\(468\) 0 0
\(469\) −7.87636 −0.363697
\(470\) 0 0
\(471\) 14.5599 25.2186i 0.670887 1.16201i
\(472\) 0 0
\(473\) 7.37719 0.339204
\(474\) 0 0
\(475\) 29.7868 + 8.65209i 1.36671 + 0.396985i
\(476\) 0 0
\(477\) 31.2760 18.0572i 1.43203 0.826783i
\(478\) 0 0
\(479\) −10.7058 6.18102i −0.489162 0.282418i 0.235064 0.971980i \(-0.424470\pi\)
−0.724227 + 0.689562i \(0.757803\pi\)
\(480\) 0 0
\(481\) −1.98972 + 4.74497i −0.0907234 + 0.216352i
\(482\) 0 0
\(483\) −12.4024 + 21.4815i −0.564327 + 0.977443i
\(484\) 0 0
\(485\) −35.5087 + 4.29802i −1.61237 + 0.195163i
\(486\) 0 0
\(487\) −0.695283 1.20427i −0.0315063 0.0545705i 0.849842 0.527037i \(-0.176697\pi\)
−0.881349 + 0.472467i \(0.843364\pi\)
\(488\) 0 0
\(489\) 61.5601i 2.78384i
\(490\) 0 0
\(491\) −2.90025 + 5.02338i −0.130886 + 0.226702i −0.924019 0.382348i \(-0.875116\pi\)
0.793132 + 0.609050i \(0.208449\pi\)
\(492\) 0 0
\(493\) 4.32637i 0.194850i
\(494\) 0 0
\(495\) −55.7692 23.7857i −2.50664 1.06909i
\(496\) 0 0
\(497\) −9.82157 5.67049i −0.440558 0.254356i
\(498\) 0 0
\(499\) 27.8242i 1.24558i −0.782388 0.622792i \(-0.785998\pi\)
0.782388 0.622792i \(-0.214002\pi\)
\(500\) 0 0
\(501\) 41.1642 23.7662i 1.83908 1.06179i
\(502\) 0 0
\(503\) −8.71140 + 5.02953i −0.388422 + 0.224256i −0.681476 0.731840i \(-0.738662\pi\)
0.293054 + 0.956096i \(0.405328\pi\)
\(504\) 0 0
\(505\) −8.04403 10.7130i −0.357954 0.476723i
\(506\) 0 0
\(507\) −41.4168 11.4857i −1.83938 0.510097i
\(508\) 0 0
\(509\) 2.00505 + 1.15762i 0.0888724 + 0.0513105i 0.543778 0.839229i \(-0.316994\pi\)
−0.454905 + 0.890540i \(0.650327\pi\)
\(510\) 0 0
\(511\) 3.69878 + 6.40648i 0.163625 + 0.283406i
\(512\) 0 0
\(513\) 50.5630 + 87.5777i 2.23241 + 3.86665i
\(514\) 0 0
\(515\) −24.0844 10.2721i −1.06128 0.452642i
\(516\) 0 0
\(517\) 10.3897 + 5.99849i 0.456938 + 0.263813i
\(518\) 0 0
\(519\) −72.5141 −3.18301
\(520\) 0 0
\(521\) −2.78299 −0.121925 −0.0609626 0.998140i \(-0.519417\pi\)
−0.0609626 + 0.998140i \(0.519417\pi\)
\(522\) 0 0
\(523\) 23.6078 + 13.6300i 1.03230 + 0.595997i 0.917642 0.397408i \(-0.130090\pi\)
0.114655 + 0.993405i \(0.463424\pi\)
\(524\) 0 0
\(525\) 12.3377 11.8328i 0.538463 0.516424i
\(526\) 0 0
\(527\) 6.94931 + 12.0366i 0.302717 + 0.524321i
\(528\) 0 0
\(529\) 14.8177 + 25.6650i 0.644248 + 1.11587i
\(530\) 0 0
\(531\) −40.1485 23.1798i −1.74230 1.00592i
\(532\) 0 0
\(533\) 13.8280 + 5.79854i 0.598958 + 0.251162i
\(534\) 0 0
\(535\) 24.2507 18.2090i 1.04845 0.787244i
\(536\) 0 0
\(537\) 28.9899 16.7373i 1.25101 0.722269i
\(538\) 0 0
\(539\) −17.5599 + 10.1382i −0.756361 + 0.436685i
\(540\) 0 0
\(541\) 22.5466i 0.969353i 0.874693 + 0.484677i \(0.161063\pi\)
−0.874693 + 0.484677i \(0.838937\pi\)
\(542\) 0 0
\(543\) −0.780447 0.450591i −0.0334922 0.0193367i
\(544\) 0 0
\(545\) 2.86992 + 1.22403i 0.122934 + 0.0524317i
\(546\) 0 0
\(547\) 1.51141i 0.0646233i −0.999478 0.0323117i \(-0.989713\pi\)
0.999478 0.0323117i \(-0.0102869\pi\)
\(548\) 0 0
\(549\) 15.0903 26.1371i 0.644038 1.11551i
\(550\) 0 0
\(551\) 11.2011i 0.477185i
\(552\) 0 0
\(553\) 6.64551 + 11.5104i 0.282596 + 0.489470i
\(554\) 0 0
\(555\) 1.26770 + 10.4733i 0.0538110 + 0.444568i
\(556\) 0 0
\(557\) 17.5294 30.3618i 0.742745 1.28647i −0.208496 0.978023i \(-0.566857\pi\)
0.951241 0.308449i \(-0.0998100\pi\)
\(558\) 0 0
\(559\) 6.19271 4.70907i 0.261924 0.199172i
\(560\) 0 0
\(561\) −23.4559 13.5422i −0.990307 0.571754i
\(562\) 0 0
\(563\) 18.4393 10.6460i 0.777125 0.448674i −0.0582852 0.998300i \(-0.518563\pi\)
0.835411 + 0.549626i \(0.185230\pi\)
\(564\) 0 0
\(565\) 1.13287 + 9.35938i 0.0476602 + 0.393752i
\(566\) 0 0
\(567\) 31.1297 1.30732
\(568\) 0 0
\(569\) 0.488701 0.846455i 0.0204874 0.0354853i −0.855600 0.517638i \(-0.826812\pi\)
0.876087 + 0.482152i \(0.160145\pi\)
\(570\) 0 0
\(571\) −24.5468 −1.02725 −0.513625 0.858015i \(-0.671698\pi\)
−0.513625 + 0.858015i \(0.671698\pi\)
\(572\) 0 0
\(573\) 48.9036i 2.04298i
\(574\) 0 0
\(575\) −8.65477 35.2275i −0.360929 1.46909i
\(576\) 0 0
\(577\) 23.8270 0.991932 0.495966 0.868342i \(-0.334814\pi\)
0.495966 + 0.868342i \(0.334814\pi\)
\(578\) 0 0
\(579\) 20.0546 11.5785i 0.833439 0.481186i
\(580\) 0 0
\(581\) −0.365406 0.632901i −0.0151596 0.0262572i
\(582\) 0 0
\(583\) −7.78468 + 13.4835i −0.322409 + 0.558428i
\(584\) 0 0
\(585\) −61.9980 + 15.6323i −2.56330 + 0.646316i
\(586\) 0 0
\(587\) 7.63094 13.2172i 0.314963 0.545532i −0.664467 0.747318i \(-0.731341\pi\)
0.979430 + 0.201786i \(0.0646746\pi\)
\(588\) 0 0
\(589\) 17.9921 + 31.1632i 0.741350 + 1.28406i
\(590\) 0 0
\(591\) −27.5809 + 15.9238i −1.13452 + 0.655018i
\(592\) 0 0
\(593\) 35.9654 1.47692 0.738461 0.674296i \(-0.235553\pi\)
0.738461 + 0.674296i \(0.235553\pi\)
\(594\) 0 0
\(595\) 4.43070 3.32685i 0.181641 0.136388i
\(596\) 0 0
\(597\) 12.9661i 0.530668i
\(598\) 0 0
\(599\) 6.60243 0.269768 0.134884 0.990861i \(-0.456934\pi\)
0.134884 + 0.990861i \(0.456934\pi\)
\(600\) 0 0
\(601\) −14.9409 + 25.8783i −0.609451 + 1.05560i 0.381881 + 0.924212i \(0.375277\pi\)
−0.991331 + 0.131388i \(0.958057\pi\)
\(602\) 0 0
\(603\) 60.4028 2.45979
\(604\) 0 0
\(605\) 1.53028 0.185226i 0.0622145 0.00753053i
\(606\) 0 0
\(607\) −21.2089 + 12.2450i −0.860843 + 0.497008i −0.864294 0.502986i \(-0.832235\pi\)
0.00345162 + 0.999994i \(0.498901\pi\)
\(608\) 0 0
\(609\) 5.34620 + 3.08663i 0.216639 + 0.125077i
\(610\) 0 0
\(611\) 12.5505 1.59666i 0.507740 0.0645938i
\(612\) 0 0
\(613\) −16.3530 + 28.3242i −0.660490 + 1.14400i 0.319997 + 0.947419i \(0.396318\pi\)
−0.980487 + 0.196584i \(0.937015\pi\)
\(614\) 0 0
\(615\) 30.5218 3.69440i 1.23076 0.148973i
\(616\) 0 0
\(617\) 7.18390 + 12.4429i 0.289213 + 0.500932i 0.973622 0.228167i \(-0.0732731\pi\)
−0.684409 + 0.729098i \(0.739940\pi\)
\(618\) 0 0
\(619\) 11.1681i 0.448883i −0.974488 0.224442i \(-0.927944\pi\)
0.974488 0.224442i \(-0.0720558\pi\)
\(620\) 0 0
\(621\) 59.1329 102.421i 2.37292 4.11002i
\(622\) 0 0
\(623\) 6.04516i 0.242194i
\(624\) 0 0
\(625\) −1.04414 + 24.9782i −0.0417655 + 0.999127i
\(626\) 0 0
\(627\) −60.7282 35.0614i −2.42525 1.40022i
\(628\) 0 0
\(629\) 3.41932i 0.136337i
\(630\) 0 0
\(631\) 36.0259 20.7996i 1.43417 0.828018i 0.436734 0.899591i \(-0.356135\pi\)
0.997435 + 0.0715729i \(0.0228019\pi\)
\(632\) 0 0
\(633\) −41.7701 + 24.1160i −1.66021 + 0.958524i
\(634\) 0 0
\(635\) −10.6742 + 8.01489i −0.423593 + 0.318061i
\(636\) 0 0
\(637\) −8.26901 + 19.7195i −0.327630 + 0.781313i
\(638\) 0 0
\(639\) 75.3203 + 43.4862i 2.97963 + 1.72029i
\(640\) 0 0
\(641\) 2.68565 + 4.65169i 0.106077 + 0.183731i 0.914178 0.405314i \(-0.132838\pi\)
−0.808101 + 0.589044i \(0.799504\pi\)
\(642\) 0 0
\(643\) −8.77839 15.2046i −0.346186 0.599612i 0.639383 0.768889i \(-0.279190\pi\)
−0.985568 + 0.169277i \(0.945857\pi\)
\(644\) 0 0
\(645\) 6.25798 14.6727i 0.246408 0.577738i
\(646\) 0 0
\(647\) 32.6893 + 18.8732i 1.28515 + 0.741982i 0.977785 0.209610i \(-0.0672193\pi\)
0.307365 + 0.951592i \(0.400553\pi\)
\(648\) 0 0
\(649\) 19.9862 0.784525
\(650\) 0 0
\(651\) 19.8319 0.777272
\(652\) 0 0
\(653\) 11.0118 + 6.35766i 0.430925 + 0.248794i 0.699741 0.714397i \(-0.253299\pi\)
−0.268816 + 0.963192i \(0.586632\pi\)
\(654\) 0 0
\(655\) 16.7162 39.1936i 0.653157 1.53142i
\(656\) 0 0
\(657\) −28.3655 49.1305i −1.10664 1.91676i
\(658\) 0 0
\(659\) 11.0625 + 19.1608i 0.430934 + 0.746399i 0.996954 0.0779923i \(-0.0248510\pi\)
−0.566020 + 0.824391i \(0.691518\pi\)
\(660\) 0 0
\(661\) 0.612035 + 0.353359i 0.0238054 + 0.0137441i 0.511855 0.859072i \(-0.328958\pi\)
−0.488050 + 0.872816i \(0.662292\pi\)
\(662\) 0 0
\(663\) −28.3342 + 3.60463i −1.10041 + 0.139992i
\(664\) 0 0
\(665\) 11.4713 8.61336i 0.444837 0.334012i
\(666\) 0 0
\(667\) 11.3446 6.54981i 0.439265 0.253610i
\(668\) 0 0
\(669\) −8.59903 + 4.96466i −0.332458 + 0.191945i
\(670\) 0 0
\(671\) 13.0112i 0.502292i
\(672\) 0 0
\(673\) −23.3244 13.4663i −0.899090 0.519090i −0.0221849 0.999754i \(-0.507062\pi\)
−0.876905 + 0.480664i \(0.840396\pi\)
\(674\) 0 0
\(675\) −58.8247 + 56.4171i −2.26416 + 2.17150i
\(676\) 0 0
\(677\) 21.5208i 0.827111i −0.910479 0.413556i \(-0.864287\pi\)
0.910479 0.413556i \(-0.135713\pi\)
\(678\) 0 0
\(679\) −8.27088 + 14.3256i −0.317407 + 0.549766i
\(680\) 0 0
\(681\) 38.6196i 1.47991i
\(682\) 0 0
\(683\) −10.2786 17.8031i −0.393300 0.681215i 0.599583 0.800313i \(-0.295333\pi\)
−0.992883 + 0.119098i \(0.962000\pi\)
\(684\) 0 0
\(685\) −1.02778 + 0.124404i −0.0392696 + 0.00475324i
\(686\) 0 0
\(687\) 30.6302 53.0531i 1.16862 2.02410i
\(688\) 0 0
\(689\) 2.07210 + 16.2877i 0.0789407 + 0.620514i
\(690\) 0 0
\(691\) 17.2344 + 9.95031i 0.655629 + 0.378528i 0.790610 0.612321i \(-0.209764\pi\)
−0.134980 + 0.990848i \(0.543097\pi\)
\(692\) 0 0
\(693\) −24.2831 + 14.0199i −0.922440 + 0.532571i
\(694\) 0 0
\(695\) 20.6878 2.50408i 0.784733 0.0949851i
\(696\) 0 0
\(697\) 9.96475 0.377442
\(698\) 0 0
\(699\) −18.4730 + 31.9962i −0.698714 + 1.21021i
\(700\) 0 0
\(701\) 2.37131 0.0895631 0.0447816 0.998997i \(-0.485741\pi\)
0.0447816 + 0.998997i \(0.485741\pi\)
\(702\) 0 0
\(703\) 8.85276i 0.333888i
\(704\) 0 0
\(705\) 20.7440 15.5759i 0.781265 0.586624i
\(706\) 0 0
\(707\) −6.19571 −0.233014
\(708\) 0 0
\(709\) −0.916777 + 0.529301i −0.0344303 + 0.0198783i −0.517116 0.855915i \(-0.672995\pi\)
0.482686 + 0.875793i \(0.339661\pi\)
\(710\) 0 0
\(711\) −50.9636 88.2715i −1.91128 3.31044i
\(712\) 0 0
\(713\) 21.0415 36.4450i 0.788011 1.36487i
\(714\) 0 0
\(715\) 19.7776 19.2004i 0.739639 0.718055i
\(716\) 0 0
\(717\) −3.57902 + 6.19905i −0.133661 + 0.231508i
\(718\) 0 0
\(719\) −5.60426 9.70687i −0.209004 0.362005i 0.742397 0.669960i \(-0.233689\pi\)
−0.951401 + 0.307955i \(0.900355\pi\)
\(720\) 0 0
\(721\) −10.4869 + 6.05460i −0.390551 + 0.225485i
\(722\) 0 0
\(723\) −63.8754 −2.37555
\(724\) 0 0
\(725\) −8.76724 + 2.15395i −0.325607 + 0.0799958i
\(726\) 0 0
\(727\) 38.9060i 1.44294i −0.692443 0.721472i \(-0.743466\pi\)
0.692443 0.721472i \(-0.256534\pi\)
\(728\) 0 0
\(729\) −77.0471 −2.85360
\(730\) 0 0
\(731\) 2.58505 4.47745i 0.0956117 0.165604i
\(732\) 0 0
\(733\) −24.7392 −0.913765 −0.456882 0.889527i \(-0.651034\pi\)
−0.456882 + 0.889527i \(0.651034\pi\)
\(734\) 0 0
\(735\) 5.26840 + 43.5257i 0.194328 + 1.60547i
\(736\) 0 0
\(737\) −22.5516 + 13.0202i −0.830700 + 0.479605i
\(738\) 0 0
\(739\) 0.302370 + 0.174574i 0.0111229 + 0.00642179i 0.505551 0.862797i \(-0.331289\pi\)
−0.494428 + 0.869218i \(0.664623\pi\)
\(740\) 0 0
\(741\) −73.3584 + 9.33253i −2.69489 + 0.342839i
\(742\) 0 0
\(743\) −3.85776 + 6.68184i −0.141528 + 0.245133i −0.928072 0.372401i \(-0.878535\pi\)
0.786544 + 0.617534i \(0.211868\pi\)
\(744\) 0 0
\(745\) 2.93050 + 24.2108i 0.107365 + 0.887015i
\(746\) 0 0
\(747\) 2.80225 + 4.85364i 0.102529 + 0.177585i
\(748\) 0 0
\(749\) 14.0250i 0.512463i
\(750\) 0 0
\(751\) 1.71161 2.96460i 0.0624575 0.108180i −0.833106 0.553114i \(-0.813440\pi\)
0.895563 + 0.444934i \(0.146773\pi\)
\(752\) 0 0
\(753\) 25.6348i 0.934183i
\(754\) 0 0
\(755\) 9.99491 + 4.26286i 0.363752 + 0.155142i
\(756\) 0 0
\(757\) 9.76835 + 5.63976i 0.355037 + 0.204981i 0.666901 0.745146i \(-0.267620\pi\)
−0.311865 + 0.950127i \(0.600954\pi\)
\(758\) 0 0
\(759\) 82.0079i 2.97670i
\(760\) 0 0
\(761\) −33.1329 + 19.1293i −1.20107 + 0.693435i −0.960792 0.277270i \(-0.910570\pi\)
−0.240273 + 0.970705i \(0.577237\pi\)
\(762\) 0 0
\(763\) 1.24963 0.721472i 0.0452395 0.0261190i
\(764\) 0 0
\(765\) −33.9785 + 25.5132i −1.22849 + 0.922432i
\(766\) 0 0
\(767\) 16.7772 12.7577i 0.605789 0.460655i
\(768\) 0 0
\(769\) 33.7503 + 19.4857i 1.21707 + 0.702674i 0.964289 0.264851i \(-0.0853228\pi\)
0.252777 + 0.967525i \(0.418656\pi\)
\(770\) 0 0
\(771\) 29.4368 + 50.9860i 1.06014 + 1.83622i
\(772\) 0 0
\(773\) −14.4410 25.0126i −0.519407 0.899640i −0.999746 0.0225567i \(-0.992819\pi\)
0.480338 0.877083i \(-0.340514\pi\)
\(774\) 0 0
\(775\) −20.9319 + 20.0752i −0.751895 + 0.721121i
\(776\) 0 0
\(777\) 4.22534 + 2.43950i 0.151583 + 0.0875167i
\(778\) 0 0
\(779\) 25.7991 0.924350
\(780\) 0 0
\(781\) −37.4949 −1.34167
\(782\) 0 0
\(783\) −25.4900 14.7167i −0.910939 0.525931i
\(784\) 0 0
\(785\) 18.1160 + 7.72653i 0.646587 + 0.275772i
\(786\) 0 0
\(787\) −1.52068 2.63389i −0.0542062 0.0938879i 0.837649 0.546209i \(-0.183930\pi\)
−0.891855 + 0.452321i \(0.850596\pi\)
\(788\) 0 0
\(789\) −27.4514 47.5473i −0.977297 1.69273i
\(790\) 0 0
\(791\) 3.77594 + 2.18004i 0.134257 + 0.0775132i
\(792\) 0 0
\(793\) 8.30542 + 10.9221i 0.294934 + 0.387856i
\(794\) 0 0
\(795\) 20.2141