Properties

Label 260.2.z.a.49.8
Level $260$
Weight $2$
Character 260.49
Analytic conductor $2.076$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 7x^{14} + 21x^{12} - 22x^{10} - 26x^{8} - 198x^{6} + 1701x^{4} - 5103x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.8
Root \(0.517063 + 1.65307i\) of defining polynomial
Character \(\chi\) \(=\) 260.49
Dual form 260.2.z.a.69.8

$q$-expansion

\(f(q)\) \(=\) \(q+(2.86320 - 1.65307i) q^{3} +(-0.877236 + 2.05681i) q^{5} +(0.517063 - 0.895580i) q^{7} +(3.96529 - 6.86809i) q^{9} +O(q^{10})\) \(q+(2.86320 - 1.65307i) q^{3} +(-0.877236 + 2.05681i) q^{5} +(0.517063 - 0.895580i) q^{7} +(3.96529 - 6.86809i) q^{9} +(-2.96091 + 1.70948i) q^{11} +(3.57672 + 0.455025i) q^{13} +(0.888345 + 7.33919i) q^{15} +(2.07508 + 1.19805i) q^{17} +(-5.37246 - 3.10179i) q^{19} -3.41897i q^{21} +(-6.28304 + 3.62751i) q^{23} +(-3.46091 - 3.60861i) q^{25} -16.3012i q^{27} +(0.902796 + 1.56369i) q^{29} +5.80053i q^{31} +(-5.65180 + 9.78921i) q^{33} +(1.38845 + 1.84913i) q^{35} +(-0.713520 - 1.23585i) q^{37} +(10.9931 - 4.60975i) q^{39} +(-3.60158 + 2.07937i) q^{41} +(1.86864 + 1.07886i) q^{43} +(10.6478 + 14.1808i) q^{45} +3.50894 q^{47} +(2.96529 + 5.13604i) q^{49} +7.92183 q^{51} -4.55382i q^{53} +(-0.918661 - 7.58965i) q^{55} -20.5099 q^{57} +(-5.06250 - 2.92283i) q^{59} +(-1.90280 + 3.29574i) q^{61} +(-4.10061 - 7.10247i) q^{63} +(-4.07353 + 6.95747i) q^{65} +(-3.80822 - 6.59603i) q^{67} +(-11.9931 + 20.7726i) q^{69} +(9.49745 + 5.48336i) q^{71} +7.15345 q^{73} +(-15.8746 - 4.61105i) q^{75} +3.53565i q^{77} -12.8524 q^{79} +(-15.0512 - 26.0694i) q^{81} -0.706694 q^{83} +(-4.28448 + 3.21707i) q^{85} +(5.16978 + 2.98477i) q^{87} +(5.06250 - 2.92283i) q^{89} +(2.25690 - 2.96796i) q^{91} +(9.58870 + 16.6081i) q^{93} +(11.0927 - 8.32912i) q^{95} +(7.99794 - 13.8528i) q^{97} +27.1144i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 10 q^{9} - 6 q^{11} + 6 q^{15} - 18 q^{19} - 14 q^{25} + 12 q^{29} + 18 q^{39} - 48 q^{41} + 45 q^{45} - 6 q^{49} + 44 q^{51} + 2 q^{55} - 30 q^{59} - 28 q^{61} - 15 q^{65} - 34 q^{69} - 18 q^{71} - 42 q^{75} - 16 q^{79} - 44 q^{81} - 45 q^{85} + 30 q^{89} - 10 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.86320 1.65307i 1.65307 0.954401i 0.677273 0.735732i \(-0.263162\pi\)
0.975799 0.218669i \(-0.0701715\pi\)
\(4\) 0 0
\(5\) −0.877236 + 2.05681i −0.392312 + 0.919832i
\(6\) 0 0
\(7\) 0.517063 0.895580i 0.195432 0.338497i −0.751610 0.659607i \(-0.770723\pi\)
0.947042 + 0.321110i \(0.104056\pi\)
\(8\) 0 0
\(9\) 3.96529 6.86809i 1.32176 2.28936i
\(10\) 0 0
\(11\) −2.96091 + 1.70948i −0.892749 + 0.515429i −0.874841 0.484411i \(-0.839034\pi\)
−0.0179086 + 0.999840i \(0.505701\pi\)
\(12\) 0 0
\(13\) 3.57672 + 0.455025i 0.992005 + 0.126201i
\(14\) 0 0
\(15\) 0.888345 + 7.33919i 0.229370 + 1.89497i
\(16\) 0 0
\(17\) 2.07508 + 1.19805i 0.503280 + 0.290569i 0.730067 0.683375i \(-0.239489\pi\)
−0.226787 + 0.973944i \(0.572822\pi\)
\(18\) 0 0
\(19\) −5.37246 3.10179i −1.23253 0.711600i −0.264972 0.964256i \(-0.585363\pi\)
−0.967556 + 0.252656i \(0.918696\pi\)
\(20\) 0 0
\(21\) 3.41897i 0.746080i
\(22\) 0 0
\(23\) −6.28304 + 3.62751i −1.31010 + 0.756389i −0.982113 0.188292i \(-0.939705\pi\)
−0.327991 + 0.944681i \(0.606371\pi\)
\(24\) 0 0
\(25\) −3.46091 3.60861i −0.692183 0.721722i
\(26\) 0 0
\(27\) 16.3012i 3.13717i
\(28\) 0 0
\(29\) 0.902796 + 1.56369i 0.167645 + 0.290370i 0.937591 0.347739i \(-0.113050\pi\)
−0.769946 + 0.638109i \(0.779717\pi\)
\(30\) 0 0
\(31\) 5.80053i 1.04181i 0.853616 + 0.520903i \(0.174405\pi\)
−0.853616 + 0.520903i \(0.825595\pi\)
\(32\) 0 0
\(33\) −5.65180 + 9.78921i −0.983852 + 1.70408i
\(34\) 0 0
\(35\) 1.38845 + 1.84913i 0.234691 + 0.312561i
\(36\) 0 0
\(37\) −0.713520 1.23585i −0.117302 0.203173i 0.801396 0.598135i \(-0.204091\pi\)
−0.918698 + 0.394962i \(0.870758\pi\)
\(38\) 0 0
\(39\) 10.9931 4.60975i 1.76030 0.738151i
\(40\) 0 0
\(41\) −3.60158 + 2.07937i −0.562472 + 0.324744i −0.754137 0.656717i \(-0.771945\pi\)
0.191665 + 0.981460i \(0.438611\pi\)
\(42\) 0 0
\(43\) 1.86864 + 1.07886i 0.284965 + 0.164525i 0.635669 0.771962i \(-0.280724\pi\)
−0.350704 + 0.936486i \(0.614058\pi\)
\(44\) 0 0
\(45\) 10.6478 + 14.1808i 1.58729 + 2.11394i
\(46\) 0 0
\(47\) 3.50894 0.511832 0.255916 0.966699i \(-0.417623\pi\)
0.255916 + 0.966699i \(0.417623\pi\)
\(48\) 0 0
\(49\) 2.96529 + 5.13604i 0.423613 + 0.733719i
\(50\) 0 0
\(51\) 7.92183 1.10928
\(52\) 0 0
\(53\) 4.55382i 0.625515i −0.949833 0.312757i \(-0.898747\pi\)
0.949833 0.312757i \(-0.101253\pi\)
\(54\) 0 0
\(55\) −0.918661 7.58965i −0.123872 1.02339i
\(56\) 0 0
\(57\) −20.5099 −2.71661
\(58\) 0 0
\(59\) −5.06250 2.92283i −0.659081 0.380520i 0.132846 0.991137i \(-0.457588\pi\)
−0.791927 + 0.610616i \(0.790922\pi\)
\(60\) 0 0
\(61\) −1.90280 + 3.29574i −0.243628 + 0.421976i −0.961745 0.273946i \(-0.911671\pi\)
0.718117 + 0.695922i \(0.245004\pi\)
\(62\) 0 0
\(63\) −4.10061 7.10247i −0.516629 0.894827i
\(64\) 0 0
\(65\) −4.07353 + 6.95747i −0.505259 + 0.862968i
\(66\) 0 0
\(67\) −3.80822 6.59603i −0.465248 0.805833i 0.533965 0.845507i \(-0.320702\pi\)
−0.999213 + 0.0396734i \(0.987368\pi\)
\(68\) 0 0
\(69\) −11.9931 + 20.7726i −1.44380 + 2.50073i
\(70\) 0 0
\(71\) 9.49745 + 5.48336i 1.12714 + 0.650755i 0.943214 0.332185i \(-0.107786\pi\)
0.183926 + 0.982940i \(0.441119\pi\)
\(72\) 0 0
\(73\) 7.15345 0.837248 0.418624 0.908160i \(-0.362513\pi\)
0.418624 + 0.908160i \(0.362513\pi\)
\(74\) 0 0
\(75\) −15.8746 4.61105i −1.83304 0.532438i
\(76\) 0 0
\(77\) 3.53565i 0.402924i
\(78\) 0 0
\(79\) −12.8524 −1.44601 −0.723005 0.690843i \(-0.757240\pi\)
−0.723005 + 0.690843i \(0.757240\pi\)
\(80\) 0 0
\(81\) −15.0512 26.0694i −1.67236 2.89660i
\(82\) 0 0
\(83\) −0.706694 −0.0775698 −0.0387849 0.999248i \(-0.512349\pi\)
−0.0387849 + 0.999248i \(0.512349\pi\)
\(84\) 0 0
\(85\) −4.28448 + 3.21707i −0.464718 + 0.348940i
\(86\) 0 0
\(87\) 5.16978 + 2.98477i 0.554258 + 0.320001i
\(88\) 0 0
\(89\) 5.06250 2.92283i 0.536623 0.309820i −0.207086 0.978323i \(-0.566398\pi\)
0.743709 + 0.668503i \(0.233065\pi\)
\(90\) 0 0
\(91\) 2.25690 2.96796i 0.236588 0.311127i
\(92\) 0 0
\(93\) 9.58870 + 16.6081i 0.994302 + 1.72218i
\(94\) 0 0
\(95\) 11.0927 8.32912i 1.13809 0.854550i
\(96\) 0 0
\(97\) 7.99794 13.8528i 0.812068 1.40654i −0.0993461 0.995053i \(-0.531675\pi\)
0.911414 0.411490i \(-0.134992\pi\)
\(98\) 0 0
\(99\) 27.1144i 2.72510i
\(100\) 0 0
\(101\) 2.99562 + 5.18857i 0.298076 + 0.516282i 0.975696 0.219130i \(-0.0703219\pi\)
−0.677620 + 0.735412i \(0.736989\pi\)
\(102\) 0 0
\(103\) 11.7096i 1.15378i −0.816822 0.576890i \(-0.804266\pi\)
0.816822 0.576890i \(-0.195734\pi\)
\(104\) 0 0
\(105\) 7.03216 + 2.99924i 0.686269 + 0.292696i
\(106\) 0 0
\(107\) −11.7452 + 6.78110i −1.13545 + 0.655554i −0.945300 0.326201i \(-0.894231\pi\)
−0.190152 + 0.981755i \(0.560898\pi\)
\(108\) 0 0
\(109\) 1.39533i 0.133648i −0.997765 0.0668240i \(-0.978713\pi\)
0.997765 0.0668240i \(-0.0212866\pi\)
\(110\) 0 0
\(111\) −4.08591 2.35900i −0.387817 0.223906i
\(112\) 0 0
\(113\) 3.65133 + 2.10810i 0.343488 + 0.198313i 0.661813 0.749669i \(-0.269787\pi\)
−0.318325 + 0.947982i \(0.603120\pi\)
\(114\) 0 0
\(115\) −1.94939 16.1052i −0.181782 1.50182i
\(116\) 0 0
\(117\) 17.3079 22.7609i 1.60012 2.10425i
\(118\) 0 0
\(119\) 2.14589 1.23893i 0.196714 0.113573i
\(120\) 0 0
\(121\) 0.344677 0.596999i 0.0313343 0.0542726i
\(122\) 0 0
\(123\) −6.87471 + 11.9073i −0.619871 + 1.07365i
\(124\) 0 0
\(125\) 10.4583 3.95283i 0.935415 0.353552i
\(126\) 0 0
\(127\) 5.16978 2.98477i 0.458744 0.264856i −0.252772 0.967526i \(-0.581342\pi\)
0.711516 + 0.702670i \(0.248009\pi\)
\(128\) 0 0
\(129\) 7.13374 0.628091
\(130\) 0 0
\(131\) 19.0556 1.66489 0.832447 0.554105i \(-0.186940\pi\)
0.832447 + 0.554105i \(0.186940\pi\)
\(132\) 0 0
\(133\) −5.55581 + 3.20765i −0.481750 + 0.278138i
\(134\) 0 0
\(135\) 33.5285 + 14.3000i 2.88567 + 1.23075i
\(136\) 0 0
\(137\) 0.231497 0.400964i 0.0197781 0.0342567i −0.855967 0.517031i \(-0.827037\pi\)
0.875745 + 0.482774i \(0.160371\pi\)
\(138\) 0 0
\(139\) 4.65970 8.07084i 0.395231 0.684559i −0.597900 0.801571i \(-0.703998\pi\)
0.993131 + 0.117011i \(0.0373314\pi\)
\(140\) 0 0
\(141\) 10.0468 5.80053i 0.846095 0.488493i
\(142\) 0 0
\(143\) −11.3682 + 4.76707i −0.950659 + 0.398642i
\(144\) 0 0
\(145\) −4.00817 + 0.485154i −0.332861 + 0.0402899i
\(146\) 0 0
\(147\) 16.9805 + 9.80368i 1.40053 + 0.808594i
\(148\) 0 0
\(149\) −9.44524 5.45321i −0.773784 0.446744i 0.0604387 0.998172i \(-0.480750\pi\)
−0.834223 + 0.551427i \(0.814083\pi\)
\(150\) 0 0
\(151\) 4.85943i 0.395455i −0.980257 0.197727i \(-0.936644\pi\)
0.980257 0.197727i \(-0.0633561\pi\)
\(152\) 0 0
\(153\) 16.4566 9.50121i 1.33044 0.768127i
\(154\) 0 0
\(155\) −11.9306 5.08844i −0.958287 0.408713i
\(156\) 0 0
\(157\) 8.80782i 0.702940i 0.936199 + 0.351470i \(0.114318\pi\)
−0.936199 + 0.351470i \(0.885682\pi\)
\(158\) 0 0
\(159\) −7.52779 13.0385i −0.596992 1.03402i
\(160\) 0 0
\(161\) 7.50261i 0.591289i
\(162\) 0 0
\(163\) 9.30996 16.1253i 0.729212 1.26303i −0.228004 0.973660i \(-0.573220\pi\)
0.957217 0.289372i \(-0.0934466\pi\)
\(164\) 0 0
\(165\) −15.1766 20.2121i −1.18149 1.57351i
\(166\) 0 0
\(167\) 7.18849 + 12.4508i 0.556262 + 0.963474i 0.997804 + 0.0662334i \(0.0210982\pi\)
−0.441542 + 0.897240i \(0.645568\pi\)
\(168\) 0 0
\(169\) 12.5859 + 3.25499i 0.968147 + 0.250384i
\(170\) 0 0
\(171\) −42.6068 + 24.5990i −3.25822 + 1.88113i
\(172\) 0 0
\(173\) −18.9947 10.9666i −1.44414 0.833773i −0.446014 0.895026i \(-0.647157\pi\)
−0.998122 + 0.0612532i \(0.980490\pi\)
\(174\) 0 0
\(175\) −5.02131 + 1.23365i −0.379575 + 0.0932548i
\(176\) 0 0
\(177\) −19.3266 −1.45268
\(178\) 0 0
\(179\) −5.06250 8.76850i −0.378389 0.655388i 0.612439 0.790518i \(-0.290188\pi\)
−0.990828 + 0.135129i \(0.956855\pi\)
\(180\) 0 0
\(181\) 0.272578 0.0202606 0.0101303 0.999949i \(-0.496775\pi\)
0.0101303 + 0.999949i \(0.496775\pi\)
\(182\) 0 0
\(183\) 12.5818i 0.930076i
\(184\) 0 0
\(185\) 3.16784 0.383439i 0.232904 0.0281910i
\(186\) 0 0
\(187\) −8.19217 −0.599071
\(188\) 0 0
\(189\) −14.5990 8.42876i −1.06192 0.613102i
\(190\) 0 0
\(191\) 7.39587 12.8100i 0.535147 0.926901i −0.464010 0.885830i \(-0.653590\pi\)
0.999156 0.0410710i \(-0.0130770\pi\)
\(192\) 0 0
\(193\) 3.50212 + 6.06585i 0.252088 + 0.436629i 0.964101 0.265538i \(-0.0855494\pi\)
−0.712013 + 0.702167i \(0.752216\pi\)
\(194\) 0 0
\(195\) −0.162148 + 26.6545i −0.0116117 + 1.90877i
\(196\) 0 0
\(197\) −4.81643 8.34230i −0.343157 0.594365i 0.641861 0.766821i \(-0.278163\pi\)
−0.985017 + 0.172457i \(0.944829\pi\)
\(198\) 0 0
\(199\) 1.96091 3.39640i 0.139006 0.240765i −0.788115 0.615528i \(-0.788943\pi\)
0.927120 + 0.374763i \(0.122276\pi\)
\(200\) 0 0
\(201\) −21.8074 12.5905i −1.53818 0.888067i
\(202\) 0 0
\(203\) 1.86721 0.131052
\(204\) 0 0
\(205\) −1.11744 9.23186i −0.0780451 0.644781i
\(206\) 0 0
\(207\) 57.5366i 3.99907i
\(208\) 0 0
\(209\) 21.2099 1.46712
\(210\) 0 0
\(211\) 7.29429 + 12.6341i 0.502160 + 0.869766i 0.999997 + 0.00249580i \(0.000794440\pi\)
−0.497837 + 0.867271i \(0.665872\pi\)
\(212\) 0 0
\(213\) 36.2575 2.48433
\(214\) 0 0
\(215\) −3.85825 + 2.89702i −0.263131 + 0.197575i
\(216\) 0 0
\(217\) 5.19484 + 2.99924i 0.352649 + 0.203602i
\(218\) 0 0
\(219\) 20.4818 11.8252i 1.38403 0.799070i
\(220\) 0 0
\(221\) 6.87684 + 5.22929i 0.462586 + 0.351760i
\(222\) 0 0
\(223\) −1.50165 2.60093i −0.100558 0.174171i 0.811357 0.584551i \(-0.198729\pi\)
−0.911915 + 0.410380i \(0.865396\pi\)
\(224\) 0 0
\(225\) −38.5078 + 9.46067i −2.56719 + 0.630711i
\(226\) 0 0
\(227\) 5.84058 10.1162i 0.387653 0.671435i −0.604480 0.796620i \(-0.706619\pi\)
0.992133 + 0.125185i \(0.0399526\pi\)
\(228\) 0 0
\(229\) 18.5293i 1.22445i −0.790684 0.612224i \(-0.790275\pi\)
0.790684 0.612224i \(-0.209725\pi\)
\(230\) 0 0
\(231\) 5.84468 + 10.1233i 0.384552 + 0.666063i
\(232\) 0 0
\(233\) 11.1750i 0.732097i −0.930596 0.366048i \(-0.880710\pi\)
0.930596 0.366048i \(-0.119290\pi\)
\(234\) 0 0
\(235\) −3.07817 + 7.21722i −0.200798 + 0.470800i
\(236\) 0 0
\(237\) −36.7991 + 21.2460i −2.39036 + 1.38007i
\(238\) 0 0
\(239\) 2.16507i 0.140047i 0.997545 + 0.0700235i \(0.0223074\pi\)
−0.997545 + 0.0700235i \(0.977693\pi\)
\(240\) 0 0
\(241\) 16.7318 + 9.66011i 1.07779 + 0.622262i 0.930299 0.366801i \(-0.119547\pi\)
0.147491 + 0.989063i \(0.452880\pi\)
\(242\) 0 0
\(243\) −43.8375 25.3096i −2.81218 1.62361i
\(244\) 0 0
\(245\) −13.1651 + 1.59352i −0.841087 + 0.101806i
\(246\) 0 0
\(247\) −17.8044 13.5389i −1.13287 0.861457i
\(248\) 0 0
\(249\) −2.02341 + 1.16822i −0.128228 + 0.0740327i
\(250\) 0 0
\(251\) −3.87684 + 6.71488i −0.244704 + 0.423840i −0.962048 0.272879i \(-0.912024\pi\)
0.717344 + 0.696719i \(0.245357\pi\)
\(252\) 0 0
\(253\) 12.4024 21.4815i 0.779730 1.35053i
\(254\) 0 0
\(255\) −6.94931 + 16.2937i −0.435183 + 1.02035i
\(256\) 0 0
\(257\) 15.4216 8.90366i 0.961973 0.555395i 0.0651933 0.997873i \(-0.479234\pi\)
0.896780 + 0.442477i \(0.145900\pi\)
\(258\) 0 0
\(259\) −1.47574 −0.0916980
\(260\) 0 0
\(261\) 14.3194 0.886348
\(262\) 0 0
\(263\) −14.3815 + 8.30316i −0.886801 + 0.511995i −0.872895 0.487908i \(-0.837760\pi\)
−0.0139065 + 0.999903i \(0.504427\pi\)
\(264\) 0 0
\(265\) 9.36633 + 3.99477i 0.575369 + 0.245397i
\(266\) 0 0
\(267\) 9.66330 16.7373i 0.591385 1.02431i
\(268\) 0 0
\(269\) −2.96967 + 5.14362i −0.181064 + 0.313612i −0.942243 0.334930i \(-0.891287\pi\)
0.761179 + 0.648542i \(0.224621\pi\)
\(270\) 0 0
\(271\) −8.37246 + 4.83384i −0.508591 + 0.293635i −0.732254 0.681031i \(-0.761532\pi\)
0.223663 + 0.974666i \(0.428198\pi\)
\(272\) 0 0
\(273\) 1.55572 12.2287i 0.0941562 0.740115i
\(274\) 0 0
\(275\) 16.4163 + 4.76841i 0.989942 + 0.287546i
\(276\) 0 0
\(277\) 17.9423 + 10.3590i 1.07805 + 0.622411i 0.930369 0.366624i \(-0.119487\pi\)
0.147679 + 0.989035i \(0.452820\pi\)
\(278\) 0 0
\(279\) 39.8386 + 23.0008i 2.38507 + 1.37702i
\(280\) 0 0
\(281\) 27.7700i 1.65662i 0.560272 + 0.828309i \(0.310697\pi\)
−0.560272 + 0.828309i \(0.689303\pi\)
\(282\) 0 0
\(283\) −22.1502 + 12.7885i −1.31670 + 0.760194i −0.983196 0.182556i \(-0.941563\pi\)
−0.333500 + 0.942750i \(0.608230\pi\)
\(284\) 0 0
\(285\) 17.9921 42.1850i 1.06576 2.49882i
\(286\) 0 0
\(287\) 4.30067i 0.253861i
\(288\) 0 0
\(289\) −5.62937 9.75035i −0.331139 0.573550i
\(290\) 0 0
\(291\) 52.8847i 3.10016i
\(292\) 0 0
\(293\) −14.1987 + 24.5929i −0.829497 + 1.43673i 0.0689370 + 0.997621i \(0.478039\pi\)
−0.898434 + 0.439109i \(0.855294\pi\)
\(294\) 0 0
\(295\) 10.4527 7.84856i 0.608580 0.456961i
\(296\) 0 0
\(297\) 27.8667 + 48.2665i 1.61699 + 2.80071i
\(298\) 0 0
\(299\) −24.1233 + 10.1157i −1.39509 + 0.585005i
\(300\) 0 0
\(301\) 1.93241 1.11568i 0.111382 0.0643067i
\(302\) 0 0
\(303\) 17.1542 + 9.90396i 0.985481 + 0.568968i
\(304\) 0 0
\(305\) −5.10950 6.80483i −0.292569 0.389643i
\(306\) 0 0
\(307\) −11.5519 −0.659302 −0.329651 0.944103i \(-0.606931\pi\)
−0.329651 + 0.944103i \(0.606931\pi\)
\(308\) 0 0
\(309\) −19.3568 33.5269i −1.10117 1.90728i
\(310\) 0 0
\(311\) −1.03807 −0.0588634 −0.0294317 0.999567i \(-0.509370\pi\)
−0.0294317 + 0.999567i \(0.509370\pi\)
\(312\) 0 0
\(313\) 29.6339i 1.67501i 0.546432 + 0.837504i \(0.315986\pi\)
−0.546432 + 0.837504i \(0.684014\pi\)
\(314\) 0 0
\(315\) 18.2056 2.20363i 1.02577 0.124161i
\(316\) 0 0
\(317\) −20.4445 −1.14828 −0.574138 0.818759i \(-0.694663\pi\)
−0.574138 + 0.818759i \(0.694663\pi\)
\(318\) 0 0
\(319\) −5.34620 3.08663i −0.299330 0.172818i
\(320\) 0 0
\(321\) −22.4193 + 38.8313i −1.25132 + 2.16735i
\(322\) 0 0
\(323\) −7.43219 12.8729i −0.413538 0.716269i
\(324\) 0 0
\(325\) −10.7367 14.4818i −0.595567 0.803306i
\(326\) 0 0
\(327\) −2.30657 3.99510i −0.127554 0.220930i
\(328\) 0 0
\(329\) 1.81435 3.14254i 0.100028 0.173254i
\(330\) 0 0
\(331\) 4.39587 + 2.53796i 0.241619 + 0.139499i 0.615921 0.787808i \(-0.288784\pi\)
−0.374302 + 0.927307i \(0.622118\pi\)
\(332\) 0 0
\(333\) −11.3173 −0.620182
\(334\) 0 0
\(335\) 16.9075 2.04650i 0.923754 0.111812i
\(336\) 0 0
\(337\) 10.4909i 0.571473i 0.958308 + 0.285737i \(0.0922382\pi\)
−0.958308 + 0.285737i \(0.907762\pi\)
\(338\) 0 0
\(339\) 13.9393 0.757081
\(340\) 0 0
\(341\) −9.91593 17.1749i −0.536977 0.930072i
\(342\) 0 0
\(343\) 13.3719 0.722012
\(344\) 0 0
\(345\) −32.2045 42.8899i −1.73383 2.30912i
\(346\) 0 0
\(347\) 27.6247 + 15.9491i 1.48297 + 0.856193i 0.999813 0.0193399i \(-0.00615647\pi\)
0.483158 + 0.875533i \(0.339490\pi\)
\(348\) 0 0
\(349\) −28.4661 + 16.4349i −1.52376 + 0.879741i −0.524151 + 0.851625i \(0.675617\pi\)
−0.999605 + 0.0281153i \(0.991049\pi\)
\(350\) 0 0
\(351\) 7.41745 58.3049i 0.395914 3.11209i
\(352\) 0 0
\(353\) −13.6825 23.6988i −0.728245 1.26136i −0.957624 0.288021i \(-0.907003\pi\)
0.229379 0.973337i \(-0.426330\pi\)
\(354\) 0 0
\(355\) −19.6097 + 14.7242i −1.04078 + 0.781481i
\(356\) 0 0
\(357\) 4.09609 7.09463i 0.216788 0.375488i
\(358\) 0 0
\(359\) 0.625579i 0.0330168i −0.999864 0.0165084i \(-0.994745\pi\)
0.999864 0.0165084i \(-0.00525502\pi\)
\(360\) 0 0
\(361\) 9.74225 + 16.8741i 0.512750 + 0.888109i
\(362\) 0 0
\(363\) 2.27911i 0.119622i
\(364\) 0 0
\(365\) −6.27526 + 14.7133i −0.328462 + 0.770127i
\(366\) 0 0
\(367\) −3.44490 + 1.98891i −0.179822 + 0.103820i −0.587209 0.809435i \(-0.699773\pi\)
0.407387 + 0.913256i \(0.366440\pi\)
\(368\) 0 0
\(369\) 32.9813i 1.71694i
\(370\) 0 0
\(371\) −4.07831 2.35461i −0.211735 0.122245i
\(372\) 0 0
\(373\) 24.4645 + 14.1246i 1.26672 + 0.731343i 0.974367 0.224966i \(-0.0722271\pi\)
0.292357 + 0.956309i \(0.405560\pi\)
\(374\) 0 0
\(375\) 23.4098 28.6060i 1.20888 1.47721i
\(376\) 0 0
\(377\) 2.51754 + 6.00368i 0.129660 + 0.309205i
\(378\) 0 0
\(379\) −14.1642 + 8.17771i −0.727567 + 0.420061i −0.817531 0.575884i \(-0.804658\pi\)
0.0899646 + 0.995945i \(0.471325\pi\)
\(380\) 0 0
\(381\) 9.86809 17.0920i 0.505557 0.875651i
\(382\) 0 0
\(383\) 10.4332 18.0708i 0.533111 0.923376i −0.466141 0.884710i \(-0.654356\pi\)
0.999252 0.0386654i \(-0.0123106\pi\)
\(384\) 0 0
\(385\) −7.27215 3.10160i −0.370623 0.158072i
\(386\) 0 0
\(387\) 14.8194 8.55600i 0.753314 0.434926i
\(388\) 0 0
\(389\) −3.54177 −0.179575 −0.0897874 0.995961i \(-0.528619\pi\)
−0.0897874 + 0.995961i \(0.528619\pi\)
\(390\) 0 0
\(391\) −17.3837 −0.879133
\(392\) 0 0
\(393\) 54.5600 31.5002i 2.75219 1.58898i
\(394\) 0 0
\(395\) 11.2746 26.4349i 0.567286 1.33009i
\(396\) 0 0
\(397\) −13.8394 + 23.9705i −0.694578 + 1.20305i 0.275744 + 0.961231i \(0.411076\pi\)
−0.970323 + 0.241814i \(0.922258\pi\)
\(398\) 0 0
\(399\) −10.6049 + 18.3683i −0.530911 + 0.919565i
\(400\) 0 0
\(401\) 10.6799 6.16604i 0.533328 0.307917i −0.209043 0.977907i \(-0.567035\pi\)
0.742371 + 0.669989i \(0.233701\pi\)
\(402\) 0 0
\(403\) −2.63939 + 20.7469i −0.131477 + 1.03348i
\(404\) 0 0
\(405\) 66.8233 8.08837i 3.32047 0.401914i
\(406\) 0 0
\(407\) 4.22534 + 2.43950i 0.209442 + 0.120922i
\(408\) 0 0
\(409\) 31.2917 + 18.0663i 1.54728 + 0.893321i 0.998348 + 0.0574521i \(0.0182976\pi\)
0.548929 + 0.835869i \(0.315036\pi\)
\(410\) 0 0
\(411\) 1.53072i 0.0755049i
\(412\) 0 0
\(413\) −5.23526 + 3.02258i −0.257610 + 0.148731i
\(414\) 0 0
\(415\) 0.619938 1.45353i 0.0304315 0.0713512i
\(416\) 0 0
\(417\) 30.8113i 1.50883i
\(418\) 0 0
\(419\) 6.26566 + 10.8524i 0.306097 + 0.530176i 0.977505 0.210912i \(-0.0676434\pi\)
−0.671408 + 0.741088i \(0.734310\pi\)
\(420\) 0 0
\(421\) 7.74907i 0.377667i 0.982009 + 0.188833i \(0.0604706\pi\)
−0.982009 + 0.188833i \(0.939529\pi\)
\(422\) 0 0
\(423\) 13.9140 24.0997i 0.676521 1.17177i
\(424\) 0 0
\(425\) −2.85838 11.6345i −0.138652 0.564356i
\(426\) 0 0
\(427\) 1.96773 + 3.40821i 0.0952252 + 0.164935i
\(428\) 0 0
\(429\) −24.6693 + 32.4416i −1.19104 + 1.56629i
\(430\) 0 0
\(431\) −18.9375 + 10.9336i −0.912188 + 0.526652i −0.881134 0.472866i \(-0.843219\pi\)
−0.0310532 + 0.999518i \(0.509886\pi\)
\(432\) 0 0
\(433\) −0.219232 0.126574i −0.0105356 0.00608275i 0.494723 0.869051i \(-0.335270\pi\)
−0.505259 + 0.862968i \(0.668603\pi\)
\(434\) 0 0
\(435\) −10.6742 + 8.01489i −0.511790 + 0.384285i
\(436\) 0 0
\(437\) 45.0072 2.15299
\(438\) 0 0
\(439\) 6.98432 + 12.0972i 0.333344 + 0.577368i 0.983165 0.182719i \(-0.0584897\pi\)
−0.649822 + 0.760087i \(0.725156\pi\)
\(440\) 0 0
\(441\) 47.0330 2.23967
\(442\) 0 0
\(443\) 28.5957i 1.35862i −0.733851 0.679310i \(-0.762279\pi\)
0.733851 0.679310i \(-0.237721\pi\)
\(444\) 0 0
\(445\) 1.57070 + 12.9766i 0.0744585 + 0.615149i
\(446\) 0 0
\(447\) −36.0582 −1.70549
\(448\) 0 0
\(449\) 15.7293 + 9.08129i 0.742309 + 0.428572i 0.822908 0.568174i \(-0.192350\pi\)
−0.0805990 + 0.996747i \(0.525683\pi\)
\(450\) 0 0
\(451\) 7.10932 12.3137i 0.334765 0.579829i
\(452\) 0 0
\(453\) −8.03298 13.9135i −0.377422 0.653715i
\(454\) 0 0
\(455\) 4.12470 + 7.24562i 0.193369 + 0.339680i
\(456\) 0 0
\(457\) −4.53992 7.86337i −0.212368 0.367833i 0.740087 0.672511i \(-0.234784\pi\)
−0.952455 + 0.304678i \(0.901451\pi\)
\(458\) 0 0
\(459\) 19.5296 33.8263i 0.911564 1.57888i
\(460\) 0 0
\(461\) −32.7734 18.9217i −1.52641 0.881273i −0.999509 0.0313456i \(-0.990021\pi\)
−0.526900 0.849927i \(-0.676646\pi\)
\(462\) 0 0
\(463\) 15.5694 0.723570 0.361785 0.932262i \(-0.382167\pi\)
0.361785 + 0.932262i \(0.382167\pi\)
\(464\) 0 0
\(465\) −42.5712 + 5.15288i −1.97419 + 0.238959i
\(466\) 0 0
\(467\) 4.19255i 0.194008i −0.995284 0.0970040i \(-0.969074\pi\)
0.995284 0.0970040i \(-0.0309260\pi\)
\(468\) 0 0
\(469\) −7.87636 −0.363697
\(470\) 0 0
\(471\) 14.5599 + 25.2186i 0.670887 + 1.16201i
\(472\) 0 0
\(473\) −7.37719 −0.339204
\(474\) 0 0
\(475\) 7.40048 + 30.1222i 0.339557 + 1.38210i
\(476\) 0 0
\(477\) −31.2760 18.0572i −1.43203 0.826783i
\(478\) 0 0
\(479\) −10.7058 + 6.18102i −0.489162 + 0.282418i −0.724227 0.689562i \(-0.757803\pi\)
0.235064 + 0.971980i \(0.424470\pi\)
\(480\) 0 0
\(481\) −1.98972 4.74497i −0.0907234 0.216352i
\(482\) 0 0
\(483\) 12.4024 + 21.4815i 0.564327 + 0.977443i
\(484\) 0 0
\(485\) 21.4766 + 28.6024i 0.975200 + 1.29877i
\(486\) 0 0
\(487\) 0.695283 1.20427i 0.0315063 0.0545705i −0.849842 0.527037i \(-0.823303\pi\)
0.881349 + 0.472467i \(0.156636\pi\)
\(488\) 0 0
\(489\) 61.5601i 2.78384i
\(490\) 0 0
\(491\) −2.90025 5.02338i −0.130886 0.226702i 0.793132 0.609050i \(-0.208449\pi\)
−0.924019 + 0.382348i \(0.875116\pi\)
\(492\) 0 0
\(493\) 4.32637i 0.194850i
\(494\) 0 0
\(495\) −55.7692 23.7857i −2.50664 1.06909i
\(496\) 0 0
\(497\) 9.82157 5.67049i 0.440558 0.254356i
\(498\) 0 0
\(499\) 27.8242i 1.24558i 0.782388 + 0.622792i \(0.214002\pi\)
−0.782388 + 0.622792i \(0.785998\pi\)
\(500\) 0 0
\(501\) 41.1642 + 23.7662i 1.83908 + 1.06179i
\(502\) 0 0
\(503\) 8.71140 + 5.02953i 0.388422 + 0.224256i 0.681476 0.731840i \(-0.261338\pi\)
−0.293054 + 0.956096i \(0.594672\pi\)
\(504\) 0 0
\(505\) −13.2998 + 1.60982i −0.591832 + 0.0716360i
\(506\) 0 0
\(507\) 41.4168 11.4857i 1.83938 0.510097i
\(508\) 0 0
\(509\) 2.00505 1.15762i 0.0888724 0.0513105i −0.454905 0.890540i \(-0.650327\pi\)
0.543778 + 0.839229i \(0.316994\pi\)
\(510\) 0 0
\(511\) 3.69878 6.40648i 0.163625 0.283406i
\(512\) 0 0
\(513\) −50.5630 + 87.5777i −2.23241 + 3.86665i
\(514\) 0 0
\(515\) 24.0844 + 10.2721i 1.06128 + 0.452642i
\(516\) 0 0
\(517\) −10.3897 + 5.99849i −0.456938 + 0.263813i
\(518\) 0 0
\(519\) −72.5141 −3.18301
\(520\) 0 0
\(521\) −2.78299 −0.121925 −0.0609626 0.998140i \(-0.519417\pi\)
−0.0609626 + 0.998140i \(0.519417\pi\)
\(522\) 0 0
\(523\) −23.6078 + 13.6300i −1.03230 + 0.595997i −0.917642 0.397408i \(-0.869910\pi\)
−0.114655 + 0.993405i \(0.536576\pi\)
\(524\) 0 0
\(525\) −12.3377 + 11.8328i −0.538463 + 0.516424i
\(526\) 0 0
\(527\) −6.94931 + 12.0366i −0.302717 + 0.524321i
\(528\) 0 0
\(529\) 14.8177 25.6650i 0.644248 1.11587i
\(530\) 0 0
\(531\) −40.1485 + 23.1798i −1.74230 + 1.00592i
\(532\) 0 0
\(533\) −13.8280 + 5.79854i −0.598958 + 0.251162i
\(534\) 0 0
\(535\) −3.64410 30.1063i −0.157548 1.30161i
\(536\) 0 0
\(537\) −28.9899 16.7373i −1.25101 0.722269i
\(538\) 0 0
\(539\) −17.5599 10.1382i −0.756361 0.436685i
\(540\) 0 0
\(541\) 22.5466i 0.969353i −0.874693 0.484677i \(-0.838937\pi\)
0.874693 0.484677i \(-0.161063\pi\)
\(542\) 0 0
\(543\) 0.780447 0.450591i 0.0334922 0.0193367i
\(544\) 0 0
\(545\) 2.86992 + 1.22403i 0.122934 + 0.0524317i
\(546\) 0 0
\(547\) 1.51141i 0.0646233i −0.999478 0.0323117i \(-0.989713\pi\)
0.999478 0.0323117i \(-0.0102869\pi\)
\(548\) 0 0
\(549\) 15.0903 + 26.1371i 0.644038 + 1.11551i
\(550\) 0 0
\(551\) 11.2011i 0.477185i
\(552\) 0 0
\(553\) −6.64551 + 11.5104i −0.282596 + 0.489470i
\(554\) 0 0
\(555\) 8.43631 6.33452i 0.358101 0.268886i
\(556\) 0 0
\(557\) −17.5294 30.3618i −0.742745 1.28647i −0.951241 0.308449i \(-0.900190\pi\)
0.208496 0.978023i \(-0.433143\pi\)
\(558\) 0 0
\(559\) 6.19271 + 4.70907i 0.261924 + 0.199172i
\(560\) 0 0
\(561\) −23.4559 + 13.5422i −0.990307 + 0.571754i
\(562\) 0 0
\(563\) −18.4393 10.6460i −0.777125 0.448674i 0.0582852 0.998300i \(-0.481437\pi\)
−0.835411 + 0.549626i \(0.814770\pi\)
\(564\) 0 0
\(565\) −7.53903 + 5.66079i −0.317169 + 0.238151i
\(566\) 0 0
\(567\) −31.1297 −1.30732
\(568\) 0 0
\(569\) 0.488701 + 0.846455i 0.0204874 + 0.0354853i 0.876087 0.482152i \(-0.160145\pi\)
−0.855600 + 0.517638i \(0.826812\pi\)
\(570\) 0 0
\(571\) −24.5468 −1.02725 −0.513625 0.858015i \(-0.671698\pi\)
−0.513625 + 0.858015i \(0.671698\pi\)
\(572\) 0 0
\(573\) 48.9036i 2.04298i
\(574\) 0 0
\(575\) 34.8353 + 10.1185i 1.45273 + 0.421971i
\(576\) 0 0
\(577\) −23.8270 −0.991932 −0.495966 0.868342i \(-0.665186\pi\)
−0.495966 + 0.868342i \(0.665186\pi\)
\(578\) 0 0
\(579\) 20.0546 + 11.5785i 0.833439 + 0.481186i
\(580\) 0 0
\(581\) −0.365406 + 0.632901i −0.0151596 + 0.0262572i
\(582\) 0 0
\(583\) 7.78468 + 13.4835i 0.322409 + 0.558428i
\(584\) 0 0
\(585\) 31.6318 + 55.5657i 1.30781 + 2.29736i
\(586\) 0 0
\(587\) −7.63094 13.2172i −0.314963 0.545532i 0.664467 0.747318i \(-0.268659\pi\)
−0.979430 + 0.201786i \(0.935325\pi\)
\(588\) 0 0
\(589\) 17.9921 31.1632i 0.741350 1.28406i
\(590\) 0 0
\(591\) −27.5809 15.9238i −1.13452 0.655018i
\(592\) 0 0
\(593\) −35.9654 −1.47692 −0.738461 0.674296i \(-0.764447\pi\)
−0.738461 + 0.674296i \(0.764447\pi\)
\(594\) 0 0
\(595\) 0.665790 + 5.50052i 0.0272947 + 0.225500i
\(596\) 0 0
\(597\) 12.9661i 0.530668i
\(598\) 0 0
\(599\) 6.60243 0.269768 0.134884 0.990861i \(-0.456934\pi\)
0.134884 + 0.990861i \(0.456934\pi\)
\(600\) 0 0
\(601\) −14.9409 25.8783i −0.609451 1.05560i −0.991331 0.131388i \(-0.958057\pi\)
0.381881 0.924212i \(-0.375277\pi\)
\(602\) 0 0
\(603\) −60.4028 −2.45979
\(604\) 0 0
\(605\) 0.925548 + 1.23264i 0.0376289 + 0.0501141i
\(606\) 0 0
\(607\) 21.2089 + 12.2450i 0.860843 + 0.497008i 0.864294 0.502986i \(-0.167765\pi\)
−0.00345162 + 0.999994i \(0.501099\pi\)
\(608\) 0 0
\(609\) 5.34620 3.08663i 0.216639 0.125077i
\(610\) 0 0
\(611\) 12.5505 + 1.59666i 0.507740 + 0.0645938i
\(612\) 0 0
\(613\) 16.3530 + 28.3242i 0.660490 + 1.14400i 0.980487 + 0.196584i \(0.0629848\pi\)
−0.319997 + 0.947419i \(0.603682\pi\)
\(614\) 0 0
\(615\) −18.4604 24.5855i −0.744394 0.991383i
\(616\) 0 0
\(617\) −7.18390 + 12.4429i −0.289213 + 0.500932i −0.973622 0.228167i \(-0.926727\pi\)
0.684409 + 0.729098i \(0.260060\pi\)
\(618\) 0 0
\(619\) 11.1681i 0.448883i 0.974488 + 0.224442i \(0.0720558\pi\)
−0.974488 + 0.224442i \(0.927944\pi\)
\(620\) 0 0
\(621\) 59.1329 + 102.421i 2.37292 + 4.11002i
\(622\) 0 0
\(623\) 6.04516i 0.242194i
\(624\) 0 0
\(625\) −1.04414 + 24.9782i −0.0417655 + 0.999127i
\(626\) 0 0
\(627\) 60.7282 35.0614i 2.42525 1.40022i
\(628\) 0 0
\(629\) 3.41932i 0.136337i
\(630\) 0 0
\(631\) 36.0259 + 20.7996i 1.43417 + 0.828018i 0.997435 0.0715729i \(-0.0228019\pi\)
0.436734 + 0.899591i \(0.356135\pi\)
\(632\) 0 0
\(633\) 41.7701 + 24.1160i 1.66021 + 0.958524i
\(634\) 0 0
\(635\) 1.60399 + 13.2516i 0.0636524 + 0.525873i
\(636\) 0 0
\(637\) 8.26901 + 19.7195i 0.327630 + 0.781313i
\(638\) 0 0
\(639\) 75.3203 43.4862i 2.97963 1.72029i
\(640\) 0 0
\(641\) 2.68565 4.65169i 0.106077 0.183731i −0.808101 0.589044i \(-0.799504\pi\)
0.914178 + 0.405314i \(0.132838\pi\)
\(642\) 0 0
\(643\) 8.77839 15.2046i 0.346186 0.599612i −0.639383 0.768889i \(-0.720810\pi\)
0.985568 + 0.169277i \(0.0541433\pi\)
\(644\) 0 0
\(645\) −6.25798 + 14.6727i −0.246408 + 0.577738i
\(646\) 0 0
\(647\) −32.6893 + 18.8732i −1.28515 + 0.741982i −0.977785 0.209610i \(-0.932781\pi\)
−0.307365 + 0.951592i \(0.599447\pi\)
\(648\) 0 0
\(649\) 19.9862 0.784525
\(650\) 0 0
\(651\) 19.8319 0.777272
\(652\) 0 0
\(653\) −11.0118 + 6.35766i −0.430925 + 0.248794i −0.699741 0.714397i \(-0.746701\pi\)
0.268816 + 0.963192i \(0.413368\pi\)
\(654\) 0 0
\(655\) −16.7162 + 39.1936i −0.653157 + 1.53142i
\(656\) 0 0
\(657\) 28.3655 49.1305i 1.10664 1.91676i
\(658\) 0 0
\(659\) 11.0625 19.1608i 0.430934 0.746399i −0.566020 0.824391i \(-0.691518\pi\)
0.996954 + 0.0779923i \(0.0248510\pi\)
\(660\) 0 0
\(661\) 0.612035 0.353359i 0.0238054 0.0137441i −0.488050 0.872816i \(-0.662292\pi\)
0.511855 + 0.859072i \(0.328958\pi\)
\(662\) 0 0
\(663\) 28.3342 + 3.60463i 1.10041 + 0.139992i
\(664\) 0 0
\(665\) −1.72376 14.2411i −0.0668445 0.552246i
\(666\) 0 0
\(667\) −11.3446 6.54981i −0.439265 0.253610i
\(668\) 0 0
\(669\) −8.59903 4.96466i −0.332458 0.191945i
\(670\) 0 0
\(671\) 13.0112i 0.502292i
\(672\) 0 0
\(673\) 23.3244 13.4663i 0.899090 0.519090i 0.0221849 0.999754i \(-0.492938\pi\)
0.876905 + 0.480664i \(0.159604\pi\)
\(674\) 0 0
\(675\) −58.8247 + 56.4171i −2.26416 + 2.17150i
\(676\) 0 0
\(677\) 21.5208i 0.827111i −0.910479 0.413556i \(-0.864287\pi\)
0.910479 0.413556i \(-0.135713\pi\)
\(678\) 0 0
\(679\) −8.27088 14.3256i −0.317407 0.549766i
\(680\) 0 0
\(681\) 38.6196i 1.47991i
\(682\) 0 0
\(683\) 10.2786 17.8031i 0.393300 0.681215i −0.599583 0.800313i \(-0.704667\pi\)
0.992883 + 0.119098i \(0.0380001\pi\)
\(684\) 0 0
\(685\) 0.621628 + 0.827884i 0.0237512 + 0.0316318i
\(686\) 0 0
\(687\) −30.6302 53.0531i −1.16862 2.02410i
\(688\) 0 0
\(689\) 2.07210 16.2877i 0.0789407 0.620514i
\(690\) 0 0
\(691\) 17.2344 9.95031i 0.655629 0.378528i −0.134980 0.990848i \(-0.543097\pi\)
0.790610 + 0.612321i \(0.209764\pi\)
\(692\) 0 0
\(693\) 24.2831 + 14.0199i 0.922440 + 0.532571i
\(694\) 0 0
\(695\) 12.5125 + 16.6641i 0.474626 + 0.632106i
\(696\) 0 0
\(697\) −9.96475 −0.377442
\(698\) 0 0
\(699\) −18.4730 31.9962i −0.698714 1.21021i
\(700\) 0 0
\(701\) 2.37131 0.0895631 0.0447816 0.998997i \(-0.485741\pi\)
0.0447816 + 0.998997i \(0.485741\pi\)
\(702\) 0 0
\(703\) 8.85276i 0.333888i
\(704\) 0 0
\(705\) 3.11715 + 25.7528i 0.117399 + 0.969907i
\(706\) 0 0
\(707\) 6.19571 0.233014
\(708\) 0 0
\(709\) −0.916777 0.529301i −0.0344303 0.0198783i 0.482686 0.875793i \(-0.339661\pi\)
−0.517116 + 0.855915i \(0.672995\pi\)
\(710\) 0 0
\(711\) −50.9636 + 88.2715i −1.91128 + 3.31044i
\(712\) 0 0
\(713\) −21.0415 36.4450i −0.788011 1.36487i
\(714\) 0 0
\(715\) 0.167682 27.5641i 0.00627095 1.03084i
\(716\) 0 0
\(717\) 3.57902 + 6.19905i 0.133661 + 0.231508i
\(718\) 0 0
\(719\) −5.60426 + 9.70687i −0.209004 + 0.362005i −0.951401 0.307955i \(-0.900355\pi\)
0.742397 + 0.669960i \(0.233689\pi\)
\(720\) 0 0
\(721\) −10.4869 6.05460i −0.390551 0.225485i
\(722\) 0 0
\(723\) 63.8754 2.37555
\(724\) 0 0
\(725\) 2.51824 8.66963i 0.0935252 0.321982i
\(726\) 0 0
\(727\) 38.9060i 1.44294i −0.692443 0.721472i \(-0.743466\pi\)
0.692443 0.721472i \(-0.256534\pi\)
\(728\) 0 0
\(729\) −77.0471 −2.85360
\(730\) 0 0
\(731\) 2.58505 + 4.47745i 0.0956117 + 0.165604i
\(732\) 0 0
\(733\) 24.7392 0.913765 0.456882 0.889527i \(-0.348966\pi\)
0.456882 + 0.889527i \(0.348966\pi\)
\(734\) 0 0
\(735\) −35.0602 + 26.3254i −1.29321 + 0.971028i
\(736\) 0 0
\(737\) 22.5516 + 13.0202i 0.830700 + 0.479605i
\(738\) 0 0
\(739\) 0.302370 0.174574i 0.0111229 0.00642179i −0.494428 0.869218i \(-0.664623\pi\)
0.505551 + 0.862797i \(0.331289\pi\)
\(740\) 0 0
\(741\) −73.3584 9.33253i −2.69489 0.342839i
\(742\) 0 0
\(743\) 3.85776 + 6.68184i 0.141528 + 0.245133i 0.928072 0.372401i \(-0.121465\pi\)
−0.786544 + 0.617534i \(0.788132\pi\)
\(744\) 0 0
\(745\) 19.5019 14.6433i 0.714495 0.536489i
\(746\) 0 0
\(747\) −2.80225 + 4.85364i −0.102529 + 0.177585i
\(748\) 0 0
\(749\) 14.0250i 0.512463i
\(750\) 0 0
\(751\) 1.71161 + 2.96460i 0.0624575 + 0.108180i 0.895563 0.444934i \(-0.146773\pi\)
−0.833106 + 0.553114i \(0.813440\pi\)
\(752\) 0 0
\(753\) 25.6348i 0.934183i
\(754\) 0 0
\(755\) 9.99491 + 4.26286i 0.363752 + 0.155142i
\(756\) 0 0
\(757\) −9.76835 + 5.63976i −0.355037 + 0.204981i −0.666901 0.745146i \(-0.732380\pi\)
0.311865 + 0.950127i \(0.399046\pi\)
\(758\) 0 0
\(759\) 82.0079i 2.97670i
\(760\) 0 0
\(761\) −33.1329 19.1293i −1.20107 0.693435i −0.240273 0.970705i \(-0.577237\pi\)
−0.960792 + 0.277270i \(0.910570\pi\)
\(762\) 0 0
\(763\) −1.24963 0.721472i −0.0452395 0.0261190i
\(764\) 0 0
\(765\) 5.10586 + 42.1828i 0.184603 + 1.52512i
\(766\) 0 0
\(767\) −16.7772 12.7577i −0.605789 0.460655i
\(768\) 0 0
\(769\) 33.7503 19.4857i 1.21707 0.702674i 0.252777 0.967525i \(-0.418656\pi\)
0.964289 + 0.264851i \(0.0853228\pi\)
\(770\) 0 0
\(771\) 29.4368 50.9860i 1.06014 1.83622i
\(772\) 0 0
\(773\) 14.4410 25.0126i 0.519407 0.899640i −0.480338 0.877083i \(-0.659486\pi\)
0.999746 0.0225567i \(-0.00718064\pi\)
\(774\) 0 0
\(775\) 20.9319 20.0752i 0.751895 0.721121i
\(776\) 0 0
\(777\) −4.22534 + 2.43950i −0.151583 + 0.0875167i
\(778\) 0 0
\(779\) 25.7991 0.924350
\(780\) 0 0
\(781\) −37.4949 −1.34167
\(782\) 0 0
\(783\) 25.4900 14.7167i 0.910939 0.525931i
\(784\) 0 0
\(785\) −18.1160 7.72653i −0.646587 0.275772i
\(786\) 0 0
\(787\) 1.52068 2.63389i 0.0542062 0.0938879i −0.837649 0.546209i \(-0.816070\pi\)
0.891855 + 0.452321i \(0.149404\pi\)
\(788\) 0 0
\(789\) −27.4514 + 47.5473i −0.977297 + 1.69273i
\(790\) 0 0
\(791\) 3.77594 2.18004i 0.134257 0.0775132i
\(792\) 0 0
\(793\) −8.30542 + 10.9221i −0.294934 + 0.387856i
\(794\) 0 0