Properties

Label 26.10.c
Level $26$
Weight $10$
Character orbit 26.c
Rep. character $\chi_{26}(3,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $22$
Newform subspaces $2$
Sturm bound $35$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 26.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(35\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(26, [\chi])\).

Total New Old
Modular forms 66 22 44
Cusp forms 58 22 36
Eisenstein series 8 0 8

Trace form

\( 22 q - 16 q^{2} - 162 q^{3} - 2816 q^{4} + 1558 q^{5} + 2850 q^{7} + 8192 q^{8} - 83597 q^{9} - 41712 q^{10} + 39326 q^{11} + 82944 q^{12} + 218387 q^{13} + 121472 q^{14} + 360776 q^{15} - 720896 q^{16}+ \cdots - 3704648192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(26, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
26.10.c.a 26.c 13.c $10$ $13.391$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 26.10.c.a \(80\) \(-81\) \(-1828\) \(3323\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2^{4}-2^{4}\beta _{2})q^{2}+(-2^{4}-\beta _{1}+2^{4}\beta _{2}+\cdots)q^{3}+\cdots\)
26.10.c.b 26.c 13.c $12$ $13.391$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 26.10.c.b \(-96\) \(-81\) \(3386\) \(-473\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{4}+2^{4}\beta _{1})q^{2}+(-14+14\beta _{1}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(26, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(26, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)