Defining parameters
Level: | \( N \) | \(=\) | \( 26 = 2 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 26.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(35\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(26, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 22 | 44 |
Cusp forms | 58 | 22 | 36 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(26, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
26.10.c.a | $10$ | $13.391$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(80\) | \(-81\) | \(-1828\) | \(3323\) | \(q+(2^{4}-2^{4}\beta _{2})q^{2}+(-2^{4}-\beta _{1}+2^{4}\beta _{2}+\cdots)q^{3}+\cdots\) |
26.10.c.b | $12$ | $13.391$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-96\) | \(-81\) | \(3386\) | \(-473\) | \(q+(-2^{4}+2^{4}\beta _{1})q^{2}+(-14+14\beta _{1}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(26, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(26, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)