Defining parameters
Level: | \( N \) | \(=\) | \( 26 = 2 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 26.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(35\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(26))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 33 | 9 | 24 |
Cusp forms | 29 | 9 | 20 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(7\) | \(2\) | \(5\) | \(6\) | \(2\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(9\) | \(3\) | \(6\) | \(8\) | \(3\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(9\) | \(3\) | \(6\) | \(8\) | \(3\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(15\) | \(3\) | \(12\) | \(13\) | \(3\) | \(10\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(18\) | \(6\) | \(12\) | \(16\) | \(6\) | \(10\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(26))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
26.10.a.a | $1$ | $13.391$ | \(\Q\) | None | \(-16\) | \(-273\) | \(1015\) | \(3955\) | $+$ | $+$ | \(q-2^{4}q^{2}-273q^{3}+2^{8}q^{4}+1015q^{5}+\cdots\) | |
26.10.a.b | $1$ | $13.391$ | \(\Q\) | None | \(-16\) | \(192\) | \(-1310\) | \(-5810\) | $+$ | $+$ | \(q-2^{4}q^{2}+192q^{3}+2^{8}q^{4}-1310q^{5}+\cdots\) | |
26.10.a.c | $1$ | $13.391$ | \(\Q\) | None | \(16\) | \(75\) | \(-1979\) | \(-10115\) | $-$ | $-$ | \(q+2^{4}q^{2}+75q^{3}+2^{8}q^{4}-1979q^{5}+\cdots\) | |
26.10.a.d | $3$ | $13.391$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-48\) | \(0\) | \(248\) | \(-2956\) | $+$ | $-$ | \(q-2^{4}q^{2}-\beta _{2}q^{3}+2^{8}q^{4}+(79-11\beta _{1}+\cdots)q^{5}+\cdots\) | |
26.10.a.e | $3$ | $13.391$ | 3.3.2119705.1 | None | \(48\) | \(156\) | \(-1272\) | \(17058\) | $-$ | $+$ | \(q+2^{4}q^{2}+(52-\beta _{1}-\beta _{2})q^{3}+2^{8}q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(26))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(26)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)