Properties

Label 26.10.a
Level $26$
Weight $10$
Character orbit 26.a
Rep. character $\chi_{26}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $5$
Sturm bound $35$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(35\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(26))\).

Total New Old
Modular forms 33 9 24
Cusp forms 29 9 20
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(7\)\(2\)\(5\)\(6\)\(2\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
Plus space\(+\)\(15\)\(3\)\(12\)\(13\)\(3\)\(10\)\(2\)\(0\)\(2\)
Minus space\(-\)\(18\)\(6\)\(12\)\(16\)\(6\)\(10\)\(2\)\(0\)\(2\)

Trace form

\( 9 q - 16 q^{2} + 150 q^{3} + 2304 q^{4} - 3298 q^{5} + 4992 q^{6} + 2132 q^{7} - 4096 q^{8} + 79379 q^{9} - 51264 q^{10} + 6004 q^{11} + 38400 q^{12} - 28561 q^{13} + 188064 q^{14} + 108856 q^{15} + 589824 q^{16}+ \cdots - 5923423792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(26))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
26.10.a.a 26.a 1.a $1$ $13.391$ \(\Q\) None 26.10.a.a \(-16\) \(-273\) \(1015\) \(3955\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}-273q^{3}+2^{8}q^{4}+1015q^{5}+\cdots\)
26.10.a.b 26.a 1.a $1$ $13.391$ \(\Q\) None 26.10.a.b \(-16\) \(192\) \(-1310\) \(-5810\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+192q^{3}+2^{8}q^{4}-1310q^{5}+\cdots\)
26.10.a.c 26.a 1.a $1$ $13.391$ \(\Q\) None 26.10.a.c \(16\) \(75\) \(-1979\) \(-10115\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+75q^{3}+2^{8}q^{4}-1979q^{5}+\cdots\)
26.10.a.d 26.a 1.a $3$ $13.391$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 26.10.a.d \(-48\) \(0\) \(248\) \(-2956\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}-\beta _{2}q^{3}+2^{8}q^{4}+(79-11\beta _{1}+\cdots)q^{5}+\cdots\)
26.10.a.e 26.a 1.a $3$ $13.391$ 3.3.2119705.1 None 26.10.a.e \(48\) \(156\) \(-1272\) \(17058\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+(52-\beta _{1}-\beta _{2})q^{3}+2^{8}q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(26))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(26)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)