Properties

Label 2592.2.s.h.1727.4
Level $2592$
Weight $2$
Character 2592.1727
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 864)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1727.4
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2592.1727
Dual form 2592.2.s.h.863.4

$q$-expansion

\(f(q)\) \(=\) \(q+(2.72474 - 1.57313i) q^{5} +(2.98735 + 1.72474i) q^{7} +O(q^{10})\) \(q+(2.72474 - 1.57313i) q^{5} +(2.98735 + 1.72474i) q^{7} +(2.28024 - 3.94949i) q^{11} +(3.44949 + 5.97469i) q^{13} -3.46410i q^{17} -4.89898i q^{19} +(-1.41421 - 2.44949i) q^{23} +(2.44949 - 4.24264i) q^{25} +(1.89898 + 1.09638i) q^{29} +(2.20881 - 1.27526i) q^{31} +10.8530 q^{35} -4.89898 q^{37} +(-3.55051 + 2.04989i) q^{41} +(2.51059 + 1.44949i) q^{43} +(1.09638 - 1.89898i) q^{47} +(2.44949 + 4.24264i) q^{49} +12.9029i q^{53} -14.3485i q^{55} +(-1.09638 - 1.89898i) q^{59} +(-2.00000 + 3.46410i) q^{61} +(18.7980 + 10.8530i) q^{65} +(-12.9029 + 7.44949i) q^{67} -13.2207 q^{71} -7.89898 q^{73} +(13.6237 - 7.86566i) q^{77} +(1.73205 + 1.00000i) q^{79} +(6.20504 - 10.7474i) q^{83} +(-5.44949 - 9.43879i) q^{85} +5.02118i q^{89} +23.7980i q^{91} +(-7.70674 - 13.3485i) q^{95} +(2.50000 - 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 12 q^{5} + 8 q^{13} - 24 q^{29} - 48 q^{41} - 16 q^{61} + 72 q^{65} - 24 q^{73} + 60 q^{77} - 24 q^{85} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.72474 1.57313i 1.21854 0.703526i 0.253937 0.967221i \(-0.418274\pi\)
0.964606 + 0.263695i \(0.0849412\pi\)
\(6\) 0 0
\(7\) 2.98735 + 1.72474i 1.12911 + 0.651892i 0.943711 0.330771i \(-0.107309\pi\)
0.185399 + 0.982663i \(0.440642\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.28024 3.94949i 0.687518 1.19082i −0.285120 0.958492i \(-0.592034\pi\)
0.972638 0.232324i \(-0.0746331\pi\)
\(12\) 0 0
\(13\) 3.44949 + 5.97469i 0.956716 + 1.65708i 0.730391 + 0.683030i \(0.239338\pi\)
0.226326 + 0.974052i \(0.427329\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410i 0.840168i −0.907485 0.420084i \(-0.862001\pi\)
0.907485 0.420084i \(-0.137999\pi\)
\(18\) 0 0
\(19\) 4.89898i 1.12390i −0.827170 0.561951i \(-0.810051\pi\)
0.827170 0.561951i \(-0.189949\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.41421 2.44949i −0.294884 0.510754i 0.680074 0.733144i \(-0.261948\pi\)
−0.974958 + 0.222390i \(0.928614\pi\)
\(24\) 0 0
\(25\) 2.44949 4.24264i 0.489898 0.848528i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.89898 + 1.09638i 0.352632 + 0.203592i 0.665844 0.746091i \(-0.268072\pi\)
−0.313212 + 0.949683i \(0.601405\pi\)
\(30\) 0 0
\(31\) 2.20881 1.27526i 0.396713 0.229043i −0.288352 0.957525i \(-0.593107\pi\)
0.685065 + 0.728482i \(0.259774\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.8530 1.83449
\(36\) 0 0
\(37\) −4.89898 −0.805387 −0.402694 0.915335i \(-0.631926\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.55051 + 2.04989i −0.554497 + 0.320139i −0.750934 0.660378i \(-0.770396\pi\)
0.196437 + 0.980516i \(0.437063\pi\)
\(42\) 0 0
\(43\) 2.51059 + 1.44949i 0.382861 + 0.221045i 0.679062 0.734080i \(-0.262387\pi\)
−0.296201 + 0.955126i \(0.595720\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.09638 1.89898i 0.159923 0.276995i −0.774918 0.632062i \(-0.782209\pi\)
0.934841 + 0.355067i \(0.115542\pi\)
\(48\) 0 0
\(49\) 2.44949 + 4.24264i 0.349927 + 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.9029i 1.77235i 0.463352 + 0.886174i \(0.346647\pi\)
−0.463352 + 0.886174i \(0.653353\pi\)
\(54\) 0 0
\(55\) 14.3485i 1.93475i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.09638 1.89898i −0.142736 0.247226i 0.785790 0.618493i \(-0.212257\pi\)
−0.928526 + 0.371267i \(0.878923\pi\)
\(60\) 0 0
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.7980 + 10.8530i 2.33160 + 1.34615i
\(66\) 0 0
\(67\) −12.9029 + 7.44949i −1.57634 + 0.910100i −0.580975 + 0.813921i \(0.697329\pi\)
−0.995364 + 0.0961789i \(0.969338\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.2207 −1.56901 −0.784506 0.620121i \(-0.787083\pi\)
−0.784506 + 0.620121i \(0.787083\pi\)
\(72\) 0 0
\(73\) −7.89898 −0.924506 −0.462253 0.886748i \(-0.652959\pi\)
−0.462253 + 0.886748i \(0.652959\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.6237 7.86566i 1.55257 0.896375i
\(78\) 0 0
\(79\) 1.73205 + 1.00000i 0.194871 + 0.112509i 0.594261 0.804272i \(-0.297445\pi\)
−0.399390 + 0.916781i \(0.630778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.20504 10.7474i 0.681092 1.17969i −0.293556 0.955942i \(-0.594839\pi\)
0.974648 0.223744i \(-0.0718279\pi\)
\(84\) 0 0
\(85\) −5.44949 9.43879i −0.591080 1.02378i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.02118i 0.532244i 0.963939 + 0.266122i \(0.0857424\pi\)
−0.963939 + 0.266122i \(0.914258\pi\)
\(90\) 0 0
\(91\) 23.7980i 2.49470i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.70674 13.3485i −0.790695 1.36952i
\(96\) 0 0
\(97\) 2.50000 4.33013i 0.253837 0.439658i −0.710742 0.703452i \(-0.751641\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.37628 0.794593i −0.136945 0.0790650i 0.429962 0.902847i \(-0.358527\pi\)
−0.566907 + 0.823782i \(0.691860\pi\)
\(102\) 0 0
\(103\) 8.66025 5.00000i 0.853320 0.492665i −0.00844953 0.999964i \(-0.502690\pi\)
0.861770 + 0.507300i \(0.169356\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.66025 −0.837218 −0.418609 0.908166i \(-0.637482\pi\)
−0.418609 + 0.908166i \(0.637482\pi\)
\(108\) 0 0
\(109\) 4.89898 0.469237 0.234619 0.972088i \(-0.424616\pi\)
0.234619 + 0.972088i \(0.424616\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.2474 7.07107i 1.15214 0.665190i 0.202735 0.979234i \(-0.435017\pi\)
0.949409 + 0.314044i \(0.101684\pi\)
\(114\) 0 0
\(115\) −7.70674 4.44949i −0.718657 0.414917i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.97469 10.3485i 0.547699 0.948643i
\(120\) 0 0
\(121\) −4.89898 8.48528i −0.445362 0.771389i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.317837i 0.0284282i
\(126\) 0 0
\(127\) 9.24745i 0.820578i 0.911955 + 0.410289i \(0.134572\pi\)
−0.911955 + 0.410289i \(0.865428\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.15855 12.3990i −0.625446 1.08330i −0.988454 0.151518i \(-0.951584\pi\)
0.363009 0.931786i \(-0.381750\pi\)
\(132\) 0 0
\(133\) 8.44949 14.6349i 0.732664 1.26901i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.2474 + 8.80312i 1.30268 + 0.752101i 0.980863 0.194701i \(-0.0623738\pi\)
0.321815 + 0.946803i \(0.395707\pi\)
\(138\) 0 0
\(139\) −17.3205 + 10.0000i −1.46911 + 0.848189i −0.999400 0.0346338i \(-0.988974\pi\)
−0.469706 + 0.882823i \(0.655640\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 31.4626 2.63104
\(144\) 0 0
\(145\) 6.89898 0.572929
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.72474 + 3.30518i −0.468989 + 0.270771i −0.715817 0.698288i \(-0.753945\pi\)
0.246827 + 0.969060i \(0.420612\pi\)
\(150\) 0 0
\(151\) −6.27647 3.62372i −0.510772 0.294895i 0.222379 0.974960i \(-0.428618\pi\)
−0.733151 + 0.680066i \(0.761951\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.01229 6.94949i 0.322275 0.558196i
\(156\) 0 0
\(157\) −2.89898 5.02118i −0.231364 0.400734i 0.726846 0.686801i \(-0.240985\pi\)
−0.958210 + 0.286067i \(0.907652\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.75663i 0.768930i
\(162\) 0 0
\(163\) 6.00000i 0.469956i 0.972001 + 0.234978i \(0.0755019\pi\)
−0.972001 + 0.234978i \(0.924498\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.83183 + 10.1010i 0.451280 + 0.781640i 0.998466 0.0553709i \(-0.0176341\pi\)
−0.547186 + 0.837011i \(0.684301\pi\)
\(168\) 0 0
\(169\) −17.2980 + 29.9609i −1.33061 + 2.30469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.62372 + 4.40156i 0.579621 + 0.334644i 0.760983 0.648772i \(-0.224717\pi\)
−0.181362 + 0.983416i \(0.558050\pi\)
\(174\) 0 0
\(175\) 14.6349 8.44949i 1.10630 0.638721i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.66025 0.647298 0.323649 0.946177i \(-0.395090\pi\)
0.323649 + 0.946177i \(0.395090\pi\)
\(180\) 0 0
\(181\) 9.79796 0.728277 0.364138 0.931345i \(-0.381364\pi\)
0.364138 + 0.931345i \(0.381364\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.3485 + 7.70674i −0.981399 + 0.566611i
\(186\) 0 0
\(187\) −13.6814 7.89898i −1.00049 0.577631i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.33902 9.24745i 0.386318 0.669122i −0.605633 0.795744i \(-0.707080\pi\)
0.991951 + 0.126622i \(0.0404135\pi\)
\(192\) 0 0
\(193\) −5.94949 10.3048i −0.428254 0.741757i 0.568464 0.822708i \(-0.307538\pi\)
−0.996718 + 0.0809508i \(0.974204\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.87492i 0.133582i 0.997767 + 0.0667911i \(0.0212761\pi\)
−0.997767 + 0.0667911i \(0.978724\pi\)
\(198\) 0 0
\(199\) 5.65153i 0.400626i −0.979732 0.200313i \(-0.935804\pi\)
0.979732 0.200313i \(-0.0641960\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.78194 + 6.55051i 0.265440 + 0.459756i
\(204\) 0 0
\(205\) −6.44949 + 11.1708i −0.450452 + 0.780206i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −19.3485 11.1708i −1.33836 0.772703i
\(210\) 0 0
\(211\) 17.7491 10.2474i 1.22190 0.705463i 0.256576 0.966524i \(-0.417406\pi\)
0.965322 + 0.261061i \(0.0840722\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.12096 0.622044
\(216\) 0 0
\(217\) 8.79796 0.597244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 20.6969 11.9494i 1.39223 0.803802i
\(222\) 0 0
\(223\) 17.1455 + 9.89898i 1.14815 + 0.662885i 0.948436 0.316969i \(-0.102665\pi\)
0.199714 + 0.979854i \(0.435999\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.4887 + 19.8990i −0.762531 + 1.32074i 0.179012 + 0.983847i \(0.442710\pi\)
−0.941542 + 0.336895i \(0.890623\pi\)
\(228\) 0 0
\(229\) −1.00000 1.73205i −0.0660819 0.114457i 0.831092 0.556136i \(-0.187717\pi\)
−0.897173 + 0.441679i \(0.854383\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.56388i 0.495526i 0.968821 + 0.247763i \(0.0796954\pi\)
−0.968821 + 0.247763i \(0.920305\pi\)
\(234\) 0 0
\(235\) 6.89898i 0.450040i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.60697 + 6.24745i 0.233315 + 0.404114i 0.958782 0.284144i \(-0.0917093\pi\)
−0.725466 + 0.688258i \(0.758376\pi\)
\(240\) 0 0
\(241\) 0.101021 0.174973i 0.00650730 0.0112710i −0.862753 0.505625i \(-0.831262\pi\)
0.869261 + 0.494354i \(0.164595\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 13.3485 + 7.70674i 0.852802 + 0.492366i
\(246\) 0 0
\(247\) 29.2699 16.8990i 1.86240 1.07526i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.3205 −1.09326 −0.546630 0.837374i \(-0.684090\pi\)
−0.546630 + 0.837374i \(0.684090\pi\)
\(252\) 0 0
\(253\) −12.8990 −0.810952
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.8990 11.4887i 1.24126 0.716644i 0.271913 0.962322i \(-0.412344\pi\)
0.969352 + 0.245678i \(0.0790105\pi\)
\(258\) 0 0
\(259\) −14.6349 8.44949i −0.909371 0.525026i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.2706 26.4495i 0.941627 1.63095i 0.179258 0.983802i \(-0.442630\pi\)
0.762368 0.647143i \(-0.224037\pi\)
\(264\) 0 0
\(265\) 20.2980 + 35.1571i 1.24689 + 2.15968i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.3923i 0.633630i −0.948487 0.316815i \(-0.897387\pi\)
0.948487 0.316815i \(-0.102613\pi\)
\(270\) 0 0
\(271\) 17.4495i 1.05998i −0.848004 0.529991i \(-0.822195\pi\)
0.848004 0.529991i \(-0.177805\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −11.1708 19.3485i −0.673627 1.16676i
\(276\) 0 0
\(277\) −2.89898 + 5.02118i −0.174183 + 0.301693i −0.939878 0.341510i \(-0.889062\pi\)
0.765695 + 0.643203i \(0.222395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.7980 10.8530i −1.12139 0.647436i −0.179636 0.983733i \(-0.557492\pi\)
−0.941756 + 0.336297i \(0.890825\pi\)
\(282\) 0 0
\(283\) −11.1708 + 6.44949i −0.664038 + 0.383382i −0.793814 0.608161i \(-0.791908\pi\)
0.129776 + 0.991543i \(0.458574\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.1421 −0.834784
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.7980 + 14.3171i −1.44871 + 0.836414i −0.998405 0.0564592i \(-0.982019\pi\)
−0.450307 + 0.892874i \(0.648686\pi\)
\(294\) 0 0
\(295\) −5.97469 3.44949i −0.347860 0.200837i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.75663 16.8990i 0.564241 0.977293i
\(300\) 0 0
\(301\) 5.00000 + 8.66025i 0.288195 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.5851i 0.720618i
\(306\) 0 0
\(307\) 18.0000i 1.02731i 0.857996 + 0.513657i \(0.171710\pi\)
−0.857996 + 0.513657i \(0.828290\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.87832 8.44949i −0.276624 0.479127i 0.693920 0.720052i \(-0.255882\pi\)
−0.970544 + 0.240926i \(0.922549\pi\)
\(312\) 0 0
\(313\) 9.74745 16.8831i 0.550958 0.954288i −0.447247 0.894410i \(-0.647596\pi\)
0.998206 0.0598776i \(-0.0190710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.3763 + 7.72280i 0.751286 + 0.433755i 0.826159 0.563438i \(-0.190522\pi\)
−0.0748721 + 0.997193i \(0.523855\pi\)
\(318\) 0 0
\(319\) 8.66025 5.00000i 0.484881 0.279946i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.9706 −0.944267
\(324\) 0 0
\(325\) 33.7980 1.87477
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.55051 3.78194i 0.361141 0.208505i
\(330\) 0 0
\(331\) 24.8523 + 14.3485i 1.36600 + 0.788663i 0.990415 0.138123i \(-0.0441069\pi\)
0.375590 + 0.926786i \(0.377440\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −23.4381 + 40.5959i −1.28056 + 2.21799i
\(336\) 0 0
\(337\) −11.8990 20.6096i −0.648179 1.12268i −0.983558 0.180595i \(-0.942198\pi\)
0.335379 0.942083i \(-0.391136\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.6315i 0.629884i
\(342\) 0 0
\(343\) 7.24745i 0.391325i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.4012 + 19.7474i 0.612048 + 1.06010i 0.990895 + 0.134639i \(0.0429875\pi\)
−0.378847 + 0.925460i \(0.623679\pi\)
\(348\) 0 0
\(349\) −7.55051 + 13.0779i −0.404170 + 0.700042i −0.994224 0.107321i \(-0.965773\pi\)
0.590055 + 0.807363i \(0.299106\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.2474 + 7.07107i 0.651866 + 0.376355i 0.789171 0.614174i \(-0.210511\pi\)
−0.137305 + 0.990529i \(0.543844\pi\)
\(354\) 0 0
\(355\) −36.0231 + 20.7980i −1.91191 + 1.10384i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.349945 −0.0184694 −0.00923470 0.999957i \(-0.502940\pi\)
−0.00923470 + 0.999957i \(0.502940\pi\)
\(360\) 0 0
\(361\) −5.00000 −0.263158
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.5227 + 12.4261i −1.12655 + 0.650414i
\(366\) 0 0
\(367\) 11.6476 + 6.72474i 0.608000 + 0.351029i 0.772182 0.635401i \(-0.219165\pi\)
−0.164182 + 0.986430i \(0.552499\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.2542 + 38.5454i −1.15538 + 2.00118i
\(372\) 0 0
\(373\) 7.24745 + 12.5529i 0.375259 + 0.649967i 0.990366 0.138477i \(-0.0442205\pi\)
−0.615107 + 0.788444i \(0.710887\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.1278i 0.779119i
\(378\) 0 0
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.2672 21.2474i −0.626826 1.08569i −0.988185 0.153267i \(-0.951020\pi\)
0.361359 0.932427i \(-0.382313\pi\)
\(384\) 0 0
\(385\) 24.7474 42.8638i 1.26125 2.18454i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.7702 10.8370i −0.951685 0.549455i −0.0580807 0.998312i \(-0.518498\pi\)
−0.893604 + 0.448857i \(0.851831\pi\)
\(390\) 0 0
\(391\) −8.48528 + 4.89898i −0.429119 + 0.247752i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.29253 0.316611
\(396\) 0 0
\(397\) −20.6969 −1.03875 −0.519375 0.854547i \(-0.673835\pi\)
−0.519375 + 0.854547i \(0.673835\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.5959 + 11.3137i −0.978573 + 0.564980i −0.901839 0.432072i \(-0.857783\pi\)
−0.0767343 + 0.997052i \(0.524449\pi\)
\(402\) 0 0
\(403\) 15.2385 + 8.79796i 0.759084 + 0.438258i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.1708 + 19.3485i −0.553718 + 0.959068i
\(408\) 0 0
\(409\) 3.50000 + 6.06218i 0.173064 + 0.299755i 0.939490 0.342578i \(-0.111300\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.56388i 0.372194i
\(414\) 0 0
\(415\) 39.0454i 1.91666i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.58166 + 16.5959i 0.468095 + 0.810764i 0.999335 0.0364574i \(-0.0116073\pi\)
−0.531241 + 0.847221i \(0.678274\pi\)
\(420\) 0 0
\(421\) 5.10102 8.83523i 0.248609 0.430603i −0.714531 0.699603i \(-0.753360\pi\)
0.963140 + 0.269001i \(0.0866934\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.6969 8.48528i −0.712906 0.411597i
\(426\) 0 0
\(427\) −11.9494 + 6.89898i −0.578271 + 0.333865i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.57826 −0.316864 −0.158432 0.987370i \(-0.550644\pi\)
−0.158432 + 0.987370i \(0.550644\pi\)
\(432\) 0 0
\(433\) −26.3939 −1.26841 −0.634204 0.773165i \(-0.718672\pi\)
−0.634204 + 0.773165i \(0.718672\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.0000 + 6.92820i −0.574038 + 0.331421i
\(438\) 0 0
\(439\) 4.54442 + 2.62372i 0.216894 + 0.125224i 0.604511 0.796597i \(-0.293369\pi\)
−0.387618 + 0.921820i \(0.626702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.00340 5.20204i 0.142696 0.247156i −0.785815 0.618462i \(-0.787756\pi\)
0.928511 + 0.371305i \(0.121090\pi\)
\(444\) 0 0
\(445\) 7.89898 + 13.6814i 0.374448 + 0.648562i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.37113i 0.253479i 0.991936 + 0.126740i \(0.0404512\pi\)
−0.991936 + 0.126740i \(0.959549\pi\)
\(450\) 0 0
\(451\) 18.6969i 0.880404i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 37.4373 + 64.8434i 1.75509 + 3.03990i
\(456\) 0 0
\(457\) −12.5000 + 21.6506i −0.584725 + 1.01277i 0.410184 + 0.912003i \(0.365464\pi\)
−0.994910 + 0.100771i \(0.967869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.6237 6.13361i −0.494796 0.285671i 0.231766 0.972772i \(-0.425550\pi\)
−0.726562 + 0.687101i \(0.758883\pi\)
\(462\) 0 0
\(463\) −14.7618 + 8.52270i −0.686037 + 0.396084i −0.802126 0.597155i \(-0.796298\pi\)
0.116089 + 0.993239i \(0.462964\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.1455 0.793401 0.396700 0.917948i \(-0.370155\pi\)
0.396700 + 0.917948i \(0.370155\pi\)
\(468\) 0 0
\(469\) −51.3939 −2.37315
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.4495 6.61037i 0.526448 0.303945i
\(474\) 0 0
\(475\) −20.7846 12.0000i −0.953663 0.550598i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.58166 + 16.5959i −0.437797 + 0.758287i −0.997519 0.0703935i \(-0.977575\pi\)
0.559722 + 0.828680i \(0.310908\pi\)
\(480\) 0 0
\(481\) −16.8990 29.2699i −0.770527 1.33459i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.7313i 0.714323i
\(486\) 0 0
\(487\) 15.7980i 0.715874i 0.933746 + 0.357937i \(0.116520\pi\)
−0.933746 + 0.357937i \(0.883480\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.50170 + 2.60102i 0.0677708 + 0.117382i 0.897920 0.440159i \(-0.145078\pi\)
−0.830149 + 0.557542i \(0.811745\pi\)
\(492\) 0 0
\(493\) 3.79796 6.57826i 0.171051 0.296270i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −39.4949 22.8024i −1.77159 1.02283i
\(498\) 0 0
\(499\) 4.41761 2.55051i 0.197760 0.114177i −0.397850 0.917450i \(-0.630244\pi\)
0.595610 + 0.803274i \(0.296910\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.1127 −1.38725 −0.693623 0.720338i \(-0.743987\pi\)
−0.693623 + 0.720338i \(0.743987\pi\)
\(504\) 0 0
\(505\) −5.00000 −0.222497
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −38.1186 + 22.0078i −1.68958 + 0.975478i −0.734742 + 0.678347i \(0.762697\pi\)
−0.954837 + 0.297131i \(0.903970\pi\)
\(510\) 0 0
\(511\) −23.5970 13.6237i −1.04387 0.602678i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.7313 27.2474i 0.693205 1.20067i
\(516\) 0 0
\(517\) −5.00000 8.66025i −0.219900 0.380878i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.921404i 0.0403674i 0.999796 + 0.0201837i \(0.00642511\pi\)
−0.999796 + 0.0201837i \(0.993575\pi\)
\(522\) 0 0
\(523\) 31.3939i 1.37276i −0.727244 0.686379i \(-0.759199\pi\)
0.727244 0.686379i \(-0.240801\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.41761 7.65153i −0.192434 0.333306i
\(528\) 0 0
\(529\) 7.50000 12.9904i 0.326087 0.564799i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.4949 14.1421i −1.06099 0.612564i
\(534\) 0 0
\(535\) −23.5970 + 13.6237i −1.02019 + 0.589005i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.3417 0.962325
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.3485 7.70674i 0.571786 0.330121i
\(546\) 0 0
\(547\) 3.63907 + 2.10102i 0.155596 + 0.0898332i 0.575776 0.817607i \(-0.304700\pi\)
−0.420181 + 0.907440i \(0.638033\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.37113 9.30306i 0.228818 0.396324i
\(552\) 0 0
\(553\) 3.44949 + 5.97469i 0.146687 + 0.254070i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.8735i 1.26578i −0.774242 0.632890i \(-0.781869\pi\)
0.774242 0.632890i \(-0.218131\pi\)
\(558\) 0 0
\(559\) 20.0000i 0.845910i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.74094 + 4.74745i 0.115517 + 0.200081i 0.917986 0.396612i \(-0.129814\pi\)
−0.802469 + 0.596693i \(0.796481\pi\)
\(564\) 0 0
\(565\) 22.2474 38.5337i 0.935957 1.62113i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.8990 9.75663i −0.708442 0.409019i 0.102042 0.994780i \(-0.467462\pi\)
−0.810484 + 0.585761i \(0.800796\pi\)
\(570\) 0 0
\(571\) −0.174973 + 0.101021i −0.00732238 + 0.00422758i −0.503657 0.863904i \(-0.668012\pi\)
0.496334 + 0.868131i \(0.334679\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.8564 −0.577852
\(576\) 0 0
\(577\) 15.7980 0.657678 0.328839 0.944386i \(-0.393343\pi\)
0.328839 + 0.944386i \(0.393343\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 37.0732 21.4042i 1.53806 0.887997i
\(582\) 0 0
\(583\) 50.9599 + 29.4217i 2.11054 + 1.21852i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.7402 + 28.9949i −0.690942 + 1.19675i 0.280587 + 0.959829i \(0.409471\pi\)
−0.971529 + 0.236919i \(0.923862\pi\)
\(588\) 0 0
\(589\) −6.24745 10.8209i −0.257422 0.445867i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.7764i 1.75661i −0.478097 0.878307i \(-0.658673\pi\)
0.478097 0.878307i \(-0.341327\pi\)
\(594\) 0 0
\(595\) 37.5959i 1.54128i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.4169 31.8990i −0.752493 1.30336i −0.946611 0.322379i \(-0.895518\pi\)
0.194117 0.980978i \(-0.437816\pi\)
\(600\) 0 0
\(601\) −19.8485 + 34.3786i −0.809636 + 1.40233i 0.103480 + 0.994631i \(0.467002\pi\)
−0.913116 + 0.407699i \(0.866331\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26.6969 15.4135i −1.08538 0.626647i
\(606\) 0 0
\(607\) −3.63907 + 2.10102i −0.147705 + 0.0852778i −0.572031 0.820232i \(-0.693844\pi\)
0.424326 + 0.905510i \(0.360511\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.1278 0.612003
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.247449 + 0.142865i −0.00996191 + 0.00575151i −0.504973 0.863135i \(-0.668497\pi\)
0.495011 + 0.868887i \(0.335164\pi\)
\(618\) 0 0
\(619\) −15.2385 8.79796i −0.612488 0.353620i 0.161451 0.986881i \(-0.448383\pi\)
−0.773938 + 0.633261i \(0.781716\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.66025 + 15.0000i −0.346966 + 0.600962i
\(624\) 0 0
\(625\) 12.7474 + 22.0792i 0.509898 + 0.883169i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.9706i 0.676661i
\(630\) 0 0
\(631\) 27.7423i 1.10441i 0.833710 + 0.552203i \(0.186213\pi\)
−0.833710 + 0.552203i \(0.813787\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.5475 + 25.1969i 0.577298 + 0.999910i
\(636\) 0 0
\(637\) −16.8990 + 29.2699i −0.669562 + 1.15972i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.7526 + 10.2494i 0.701184 + 0.404829i 0.807788 0.589473i \(-0.200665\pi\)
−0.106604 + 0.994302i \(0.533998\pi\)
\(642\) 0 0
\(643\) −18.5276 + 10.6969i −0.730659 + 0.421846i −0.818663 0.574274i \(-0.805284\pi\)
0.0880043 + 0.996120i \(0.471951\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.07321 0.619620i 0.0419981 0.0242476i −0.478854 0.877895i \(-0.658948\pi\)
0.520852 + 0.853647i \(0.325614\pi\)
\(654\) 0 0
\(655\) −39.0105 22.5227i −1.52427 0.880035i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.71563 + 15.0959i −0.339513 + 0.588053i −0.984341 0.176274i \(-0.943596\pi\)
0.644828 + 0.764327i \(0.276929\pi\)
\(660\) 0 0
\(661\) −22.2474 38.5337i −0.865325 1.49879i −0.866724 0.498789i \(-0.833778\pi\)
0.00139818 0.999999i \(-0.499555\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 53.1687i 2.06179i
\(666\) 0 0
\(667\) 6.20204i 0.240144i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.12096 + 15.7980i 0.352111 + 0.609873i
\(672\) 0 0
\(673\) −1.29796 + 2.24813i −0.0500326 + 0.0866591i −0.889957 0.456044i \(-0.849266\pi\)
0.839924 + 0.542703i \(0.182599\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.4949 + 22.8024i 1.51791 + 0.876367i 0.999778 + 0.0210677i \(0.00670654\pi\)
0.518134 + 0.855299i \(0.326627\pi\)
\(678\) 0 0
\(679\) 14.9367 8.62372i 0.573219 0.330948i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.3923 −0.397650 −0.198825 0.980035i \(-0.563713\pi\)
−0.198825 + 0.980035i \(0.563713\pi\)
\(684\) 0 0
\(685\) 55.3939 2.11649
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −77.0908 + 44.5084i −2.93693 + 1.69564i
\(690\) 0 0
\(691\) 3.46410 + 2.00000i 0.131781 + 0.0760836i 0.564441 0.825473i \(-0.309092\pi\)
−0.432660 + 0.901557i \(0.642425\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −31.4626 + 54.4949i −1.19345 + 2.06711i
\(696\) 0 0
\(697\) 7.10102 + 12.2993i 0.268970 + 0.465870i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.2528i 0.500553i 0.968174 + 0.250276i \(0.0805215\pi\)
−0.968174 + 0.250276i \(0.919478\pi\)
\(702\) 0 0
\(703\) 24.0000i 0.905177i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.74094 4.74745i −0.103084 0.178546i
\(708\) 0 0
\(709\) 20.0000 34.6410i 0.751116 1.30097i −0.196167 0.980571i \(-0.562849\pi\)
0.947282 0.320400i \(-0.103817\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.24745 3.60697i −0.233969 0.135082i
\(714\) 0 0
\(715\) 85.7277 49.4949i 3.20603 1.85100i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.92820 0.258378 0.129189 0.991620i \(-0.458763\pi\)
0.129189 + 0.991620i \(0.458763\pi\)
\(720\) 0 0
\(721\) 34.4949 1.28466
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.30306 5.37113i 0.345507 0.199479i
\(726\) 0 0
\(727\) 14.9367 + 8.62372i 0.553973 + 0.319836i 0.750723 0.660617i \(-0.229705\pi\)
−0.196750 + 0.980454i \(0.563039\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.02118 8.69694i 0.185715 0.321668i
\(732\) 0 0
\(733\) 22.2474 + 38.5337i 0.821728 + 1.42328i 0.904394 + 0.426698i \(0.140323\pi\)
−0.0826660 + 0.996577i \(0.526343\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 67.9465i 2.50284i
\(738\) 0 0
\(739\) 39.3939i 1.44913i 0.689208 + 0.724564i \(0.257959\pi\)
−0.689208 + 0.724564i \(0.742041\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.58919 + 2.75255i 0.0583016 + 0.100981i 0.893703 0.448659i \(-0.148098\pi\)
−0.835402 + 0.549640i \(0.814765\pi\)
\(744\) 0 0
\(745\) −10.3990 + 18.0116i −0.380989 + 0.659893i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −25.8712 14.9367i −0.945312 0.545776i
\(750\) 0 0
\(751\) 22.2935 12.8712i 0.813502 0.469676i −0.0346683 0.999399i \(-0.511037\pi\)
0.848171 + 0.529723i \(0.177704\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.8024 −0.829864
\(756\) 0 0
\(757\) 19.3939 0.704882 0.352441 0.935834i \(-0.385352\pi\)
0.352441 + 0.935834i \(0.385352\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.2020 + 15.1278i −0.949823 + 0.548381i −0.893026 0.450005i \(-0.851422\pi\)
−0.0567972 + 0.998386i \(0.518089\pi\)
\(762\) 0 0
\(763\) 14.6349 + 8.44949i 0.529821 + 0.305892i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.56388 13.1010i 0.273116 0.473050i
\(768\) 0 0
\(769\) 18.7474 + 32.4715i 0.676050 + 1.17095i 0.976161 + 0.217049i \(0.0696431\pi\)
−0.300110 + 0.953904i \(0.597024\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.349945i 0.0125867i 0.999980 + 0.00629333i \(0.00200324\pi\)
−0.999980 + 0.00629333i \(0.997997\pi\)
\(774\) 0 0
\(775\) 12.4949i 0.448830i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.0424 + 17.3939i 0.359805 + 0.623200i
\(780\) 0 0
\(781\) −30.1464 + 52.2151i −1.07872 + 1.86840i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.7980 9.12096i −0.563853 0.325541i
\(786\) 0 0
\(787\) 37.4052 21.5959i 1.33335 0.769811i 0.347540 0.937665i \(-0.387017\pi\)
0.985812 + 0.167854i \(0.0536836\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 48.7832 1.73453
\(792\) 0 0
\(793\) −27.5959 −0.979960
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.72474 + 5.03723i −0.309046 + 0.178428i −0.646500 0.762914i \(-0.723768\pi\)
0.337453 + 0.941342i \(0.390434\pi\)
\(798\) 0 0
\(799\) −6.57826 3.79796i −0.232722 0.134362i
\(800\) 0 0
\(801\) 0 0
\(802\)