Defining parameters
| Level: | \( N \) | \(=\) | \( 2592 = 2^{5} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2592.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2592, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 70 | 4 | 66 |
| Cusp forms | 22 | 4 | 18 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2592, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2592.1.e.a | $4$ | $1.294$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | $D_{12}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{5}-\beta _{2}q^{13}-\beta _{3}q^{17}+(-1+\cdots)q^{25}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2592, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2592, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 4}\)