Properties

Label 2592.1.e
Level $2592$
Weight $1$
Character orbit 2592.e
Rep. character $\chi_{2592}(161,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2592.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2592, [\chi])\).

Total New Old
Modular forms 70 4 66
Cusp forms 22 4 18
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{25} + 4 q^{37} - 4 q^{49} - 4 q^{61} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2592, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2592.1.e.a 2592.e 3.b $4$ $1.294$ \(\Q(\sqrt{-2}, \sqrt{3})\) $D_{12}$ \(\Q(\sqrt{-1}) \) None 2592.1.e.a \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{5}-\beta _{2}q^{13}-\beta _{3}q^{17}+(-1+\cdots)q^{25}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2592, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2592, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 4}\)