Properties

Label 2580.2.o
Level $2580$
Weight $2$
Character orbit 2580.o
Rep. character $\chi_{2580}(1979,\cdot)$
Character field $\Q$
Dimension $504$
Sturm bound $1056$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2580 = 2^{2} \cdot 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2580.o (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 60 \)
Character field: \(\Q\)
Sturm bound: \(1056\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2580, [\chi])\).

Total New Old
Modular forms 536 504 32
Cusp forms 520 504 16
Eisenstein series 16 0 16

Trace form

\( 504 q + 4 q^{4} + 4 q^{16} - 16 q^{24} - 8 q^{25} - 64 q^{34} - 16 q^{36} - 16 q^{40} - 24 q^{45} - 24 q^{46} + 488 q^{49} + 30 q^{54} + 30 q^{60} - 64 q^{61} + 100 q^{64} - 62 q^{66} - 48 q^{69} + 56 q^{70}+ \cdots + 74 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2580, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2580, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2580, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)