Properties

Label 2565.1.bn
Level $2565$
Weight $1$
Character orbit 2565.bn
Rep. character $\chi_{2565}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $360$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2565 = 3^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2565.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(360\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2565, [\chi])\).

Total New Old
Modular forms 36 0 36
Cusp forms 12 0 12
Eisenstein series 24 0 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(2565, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2565, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 6}\)