Properties

Label 256.3.c.d.255.2
Level $256$
Weight $3$
Character 256.255
Analytic conductor $6.975$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,3,Mod(255,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.255");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 256.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.97549476762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 255.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 256.255
Dual form 256.3.c.d.255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.65685i q^{3} -23.0000 q^{9} +O(q^{10})\) \(q+5.65685i q^{3} -23.0000 q^{9} +16.9706i q^{11} -2.00000 q^{17} -16.9706i q^{19} -25.0000 q^{25} -79.1960i q^{27} -96.0000 q^{33} +46.0000 q^{41} +84.8528i q^{43} +49.0000 q^{49} -11.3137i q^{51} +96.0000 q^{57} +84.8528i q^{59} +118.794i q^{67} -142.000 q^{73} -141.421i q^{75} +241.000 q^{81} +50.9117i q^{83} +146.000 q^{89} +94.0000 q^{97} -390.323i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 46 q^{9} - 4 q^{17} - 50 q^{25} - 192 q^{33} + 92 q^{41} + 98 q^{49} + 192 q^{57} - 284 q^{73} + 482 q^{81} + 292 q^{89} + 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.65685i 1.88562i 0.333333 + 0.942809i \(0.391827\pi\)
−0.333333 + 0.942809i \(0.608173\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −23.0000 −2.55556
\(10\) 0 0
\(11\) 16.9706i 1.54278i 0.636364 + 0.771389i \(0.280438\pi\)
−0.636364 + 0.771389i \(0.719562\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.117647 −0.0588235 0.998268i \(-0.518735\pi\)
−0.0588235 + 0.998268i \(0.518735\pi\)
\(18\) 0 0
\(19\) − 16.9706i − 0.893188i −0.894737 0.446594i \(-0.852637\pi\)
0.894737 0.446594i \(-0.147363\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) − 79.1960i − 2.93318i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −96.0000 −2.90909
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 46.0000 1.12195 0.560976 0.827832i \(-0.310426\pi\)
0.560976 + 0.827832i \(0.310426\pi\)
\(42\) 0 0
\(43\) 84.8528i 1.97332i 0.162791 + 0.986661i \(0.447950\pi\)
−0.162791 + 0.986661i \(0.552050\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) 0 0
\(51\) − 11.3137i − 0.221837i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 96.0000 1.68421
\(58\) 0 0
\(59\) 84.8528i 1.43818i 0.694915 + 0.719092i \(0.255442\pi\)
−0.694915 + 0.719092i \(0.744558\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 118.794i 1.77304i 0.462687 + 0.886522i \(0.346886\pi\)
−0.462687 + 0.886522i \(0.653114\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −142.000 −1.94521 −0.972603 0.232473i \(-0.925318\pi\)
−0.972603 + 0.232473i \(0.925318\pi\)
\(74\) 0 0
\(75\) − 141.421i − 1.88562i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 241.000 2.97531
\(82\) 0 0
\(83\) 50.9117i 0.613394i 0.951807 + 0.306697i \(0.0992238\pi\)
−0.951807 + 0.306697i \(0.900776\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 146.000 1.64045 0.820225 0.572041i \(-0.193848\pi\)
0.820225 + 0.572041i \(0.193848\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 94.0000 0.969072 0.484536 0.874771i \(-0.338988\pi\)
0.484536 + 0.874771i \(0.338988\pi\)
\(98\) 0 0
\(99\) − 390.323i − 3.94266i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 118.794i − 1.11022i −0.831776 0.555112i \(-0.812675\pi\)
0.831776 0.555112i \(-0.187325\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 98.0000 0.867257 0.433628 0.901092i \(-0.357233\pi\)
0.433628 + 0.901092i \(0.357233\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −167.000 −1.38017
\(122\) 0 0
\(123\) 260.215i 2.11557i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) −480.000 −3.72093
\(130\) 0 0
\(131\) 254.558i 1.94319i 0.236641 + 0.971597i \(0.423953\pi\)
−0.236641 + 0.971597i \(0.576047\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 238.000 1.73723 0.868613 0.495491i \(-0.165012\pi\)
0.868613 + 0.495491i \(0.165012\pi\)
\(138\) 0 0
\(139\) − 186.676i − 1.34299i −0.741007 0.671497i \(-0.765652\pi\)
0.741007 0.671497i \(-0.234348\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 277.186i 1.88562i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 46.0000 0.300654
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 50.9117i 0.312342i 0.987730 + 0.156171i \(0.0499150\pi\)
−0.987730 + 0.156171i \(0.950085\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 390.323i 2.28259i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −480.000 −2.71186
\(178\) 0 0
\(179\) − 356.382i − 1.99096i −0.0949721 0.995480i \(-0.530276\pi\)
0.0949721 0.995480i \(-0.469724\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 33.9411i − 0.181503i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −98.0000 −0.507772 −0.253886 0.967234i \(-0.581709\pi\)
−0.253886 + 0.967234i \(0.581709\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) −672.000 −3.34328
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 288.000 1.37799
\(210\) 0 0
\(211\) − 356.382i − 1.68901i −0.535545 0.844507i \(-0.679894\pi\)
0.535545 0.844507i \(-0.320106\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 803.273i − 3.66791i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 575.000 2.55556
\(226\) 0 0
\(227\) − 84.8528i − 0.373801i −0.982379 0.186900i \(-0.940156\pi\)
0.982379 0.186900i \(-0.0598442\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 434.000 1.86266 0.931330 0.364175i \(-0.118649\pi\)
0.931330 + 0.364175i \(0.118649\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −194.000 −0.804979 −0.402490 0.915425i \(-0.631855\pi\)
−0.402490 + 0.915425i \(0.631855\pi\)
\(242\) 0 0
\(243\) 650.538i 2.67711i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −288.000 −1.15663
\(250\) 0 0
\(251\) − 186.676i − 0.743730i −0.928287 0.371865i \(-0.878718\pi\)
0.928287 0.371865i \(-0.121282\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 386.000 1.50195 0.750973 0.660333i \(-0.229585\pi\)
0.750973 + 0.660333i \(0.229585\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 825.901i 3.09326i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 424.264i − 1.54278i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −238.000 −0.846975 −0.423488 0.905902i \(-0.639194\pi\)
−0.423488 + 0.905902i \(0.639194\pi\)
\(282\) 0 0
\(283\) 560.029i 1.97890i 0.144876 + 0.989450i \(0.453722\pi\)
−0.144876 + 0.989450i \(0.546278\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −285.000 −0.986159
\(290\) 0 0
\(291\) 531.744i 1.82730i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1344.00 4.52525
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 288.500i − 0.939738i −0.882736 0.469869i \(-0.844301\pi\)
0.882736 0.469869i \(-0.155699\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 526.000 1.68051 0.840256 0.542191i \(-0.182405\pi\)
0.840256 + 0.542191i \(0.182405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 672.000 2.09346
\(322\) 0 0
\(323\) 33.9411i 0.105081i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 661.852i − 1.99955i −0.0211480 0.999776i \(-0.506732\pi\)
0.0211480 0.999776i \(-0.493268\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −478.000 −1.41840 −0.709199 0.705009i \(-0.750943\pi\)
−0.709199 + 0.705009i \(0.750943\pi\)
\(338\) 0 0
\(339\) 554.372i 1.63531i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 220.617i 0.635785i 0.948127 + 0.317892i \(0.102975\pi\)
−0.948127 + 0.317892i \(0.897025\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 194.000 0.549575 0.274788 0.961505i \(-0.411392\pi\)
0.274788 + 0.961505i \(0.411392\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 73.0000 0.202216
\(362\) 0 0
\(363\) − 944.695i − 2.60246i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −1058.00 −2.86721
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 322.441i − 0.850767i −0.905013 0.425383i \(-0.860139\pi\)
0.905013 0.425383i \(-0.139861\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1951.61i − 5.04293i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1440.00 −3.66412
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 766.000 1.91022 0.955112 0.296244i \(-0.0957342\pi\)
0.955112 + 0.296244i \(0.0957342\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 334.000 0.816626 0.408313 0.912842i \(-0.366117\pi\)
0.408313 + 0.912842i \(0.366117\pi\)
\(410\) 0 0
\(411\) 1346.33i 3.27575i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1056.00 2.53237
\(418\) 0 0
\(419\) 661.852i 1.57960i 0.613365 + 0.789799i \(0.289815\pi\)
−0.613365 + 0.789799i \(0.710185\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 50.0000 0.117647
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −578.000 −1.33487 −0.667436 0.744667i \(-0.732608\pi\)
−0.667436 + 0.744667i \(0.732608\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1127.00 −2.55556
\(442\) 0 0
\(443\) − 118.794i − 0.268158i −0.990971 0.134079i \(-0.957192\pi\)
0.990971 0.134079i \(-0.0428076\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −866.000 −1.92873 −0.964365 0.264574i \(-0.914769\pi\)
−0.964365 + 0.264574i \(0.914769\pi\)
\(450\) 0 0
\(451\) 780.646i 1.73092i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 238.000 0.520788 0.260394 0.965502i \(-0.416148\pi\)
0.260394 + 0.965502i \(0.416148\pi\)
\(458\) 0 0
\(459\) 158.392i 0.345080i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 933.381i 1.99867i 0.0364026 + 0.999337i \(0.488410\pi\)
−0.0364026 + 0.999337i \(0.511590\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1440.00 −3.04440
\(474\) 0 0
\(475\) 424.264i 0.893188i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −288.000 −0.588957
\(490\) 0 0
\(491\) − 593.970i − 1.20971i −0.796334 0.604857i \(-0.793230\pi\)
0.796334 0.604857i \(-0.206770\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 593.970i 1.19032i 0.803607 + 0.595160i \(0.202911\pi\)
−0.803607 + 0.595160i \(0.797089\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 956.008i − 1.88562i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1344.00 −2.61988
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1006.00 1.93090 0.965451 0.260584i \(-0.0839152\pi\)
0.965451 + 0.260584i \(0.0839152\pi\)
\(522\) 0 0
\(523\) 967.322i 1.84956i 0.380497 + 0.924782i \(0.375753\pi\)
−0.380497 + 0.924782i \(0.624247\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) 0 0
\(531\) − 1951.61i − 3.67536i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2016.00 3.75419
\(538\) 0 0
\(539\) 831.558i 1.54278i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 390.323i 0.713570i 0.934186 + 0.356785i \(0.116127\pi\)
−0.934186 + 0.356785i \(0.883873\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 192.000 0.342246
\(562\) 0 0
\(563\) − 1103.09i − 1.95930i −0.200710 0.979651i \(-0.564325\pi\)
0.200710 0.979651i \(-0.435675\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −626.000 −1.10018 −0.550088 0.835107i \(-0.685406\pi\)
−0.550088 + 0.835107i \(0.685406\pi\)
\(570\) 0 0
\(571\) − 933.381i − 1.63464i −0.576182 0.817321i \(-0.695458\pi\)
0.576182 0.817321i \(-0.304542\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.00346620 0.00173310 0.999998i \(-0.499448\pi\)
0.00173310 + 0.999998i \(0.499448\pi\)
\(578\) 0 0
\(579\) − 554.372i − 0.957464i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 288.500i 0.491481i 0.969336 + 0.245741i \(0.0790312\pi\)
−0.969336 + 0.245741i \(0.920969\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −862.000 −1.45363 −0.726813 0.686836i \(-0.758999\pi\)
−0.726813 + 0.686836i \(0.758999\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 914.000 1.52080 0.760399 0.649456i \(-0.225003\pi\)
0.760399 + 0.649456i \(0.225003\pi\)
\(602\) 0 0
\(603\) − 2732.26i − 4.53111i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −334.000 −0.541329 −0.270665 0.962674i \(-0.587243\pi\)
−0.270665 + 0.962674i \(0.587243\pi\)
\(618\) 0 0
\(619\) 1103.09i 1.78205i 0.453958 + 0.891023i \(0.350012\pi\)
−0.453958 + 0.891023i \(0.649988\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 1629.17i 2.59836i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 2016.00 3.18483
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −482.000 −0.751950 −0.375975 0.926630i \(-0.622692\pi\)
−0.375975 + 0.926630i \(0.622692\pi\)
\(642\) 0 0
\(643\) − 424.264i − 0.659820i −0.944012 0.329910i \(-0.892982\pi\)
0.944012 0.329910i \(-0.107018\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −1440.00 −2.21880
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3266.00 4.97108
\(658\) 0 0
\(659\) 865.499i 1.31335i 0.754173 + 0.656676i \(0.228038\pi\)
−0.754173 + 0.656676i \(0.771962\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1246.00 1.85141 0.925706 0.378244i \(-0.123472\pi\)
0.925706 + 0.378244i \(0.123472\pi\)
\(674\) 0 0
\(675\) 1979.90i 2.93318i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 480.000 0.704846
\(682\) 0 0
\(683\) 1306.73i 1.91323i 0.291362 + 0.956613i \(0.405892\pi\)
−0.291362 + 0.956613i \(0.594108\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 1170.97i − 1.69460i −0.531114 0.847300i \(-0.678227\pi\)
0.531114 0.847300i \(-0.321773\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −92.0000 −0.131994
\(698\) 0 0
\(699\) 2455.07i 3.51227i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 1097.43i − 1.51788i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1511.00 −2.07270
\(730\) 0 0
\(731\) − 169.706i − 0.232155i
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2016.00 −2.73541
\(738\) 0 0
\(739\) − 1442.50i − 1.95196i −0.217862 0.975980i \(-0.569908\pi\)
0.217862 0.975980i \(-0.430092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1170.97i − 1.56756i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 1056.00 1.40239
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1394.00 −1.83180 −0.915900 0.401406i \(-0.868522\pi\)
−0.915900 + 0.401406i \(0.868522\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1054.00 1.37061 0.685306 0.728256i \(-0.259669\pi\)
0.685306 + 0.728256i \(0.259669\pi\)
\(770\) 0 0
\(771\) 2183.55i 2.83210i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 780.646i − 1.00211i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1272.79i 1.61727i 0.588310 + 0.808635i \(0.299793\pi\)
−0.588310 + 0.808635i \(0.700207\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −3358.00 −4.19226
\(802\) 0 0
\(803\) − 2409.82i − 3.00102i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1582.00 1.95550 0.977750 0.209772i \(-0.0672722\pi\)
0.977750 + 0.209772i \(0.0672722\pi\)
\(810\) 0 0
\(811\) − 1612.20i − 1.98792i −0.109741 0.993960i \(-0.535002\pi\)
0.109741 0.993960i \(-0.464998\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1440.00 1.76255
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 2400.00 2.90909
\(826\) 0 0
\(827\) − 1069.15i − 1.29280i −0.762999 0.646400i \(-0.776274\pi\)
0.762999 0.646400i \(-0.223726\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −98.0000 −0.117647
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) − 1346.33i − 1.59707i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3168.00 −3.73145
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1202.00 −1.40257 −0.701284 0.712882i \(-0.747389\pi\)
−0.701284 + 0.712882i \(0.747389\pi\)
\(858\) 0 0
\(859\) 492.146i 0.572929i 0.958091 + 0.286465i \(0.0924801\pi\)
−0.958091 + 0.286465i \(0.907520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1612.20i − 1.85952i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2162.00 −2.47652
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1438.00 −1.63224 −0.816118 0.577885i \(-0.803878\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(882\) 0 0
\(883\) 118.794i 0.134534i 0.997735 + 0.0672672i \(0.0214280\pi\)
−0.997735 + 0.0672672i \(0.978572\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4089.91i 4.59024i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 593.970i − 0.654873i −0.944873 0.327436i \(-0.893815\pi\)
0.944873 0.327436i \(-0.106185\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −864.000 −0.946331
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 1632.00 1.77199
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1058.00 −1.13886 −0.569429 0.822040i \(-0.692836\pi\)
−0.569429 + 0.822040i \(0.692836\pi\)
\(930\) 0 0
\(931\) − 831.558i − 0.893188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −718.000 −0.766275 −0.383138 0.923691i \(-0.625157\pi\)
−0.383138 + 0.923691i \(0.625157\pi\)
\(938\) 0 0
\(939\) 2975.51i 3.16880i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1612.20i 1.70243i 0.524815 + 0.851216i \(0.324134\pi\)
−0.524815 + 0.851216i \(0.675866\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 142.000 0.149003 0.0745016 0.997221i \(-0.476263\pi\)
0.0745016 + 0.997221i \(0.476263\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 2732.26i 2.83724i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) −192.000 −0.198142
\(970\) 0 0
\(971\) − 1680.09i − 1.73026i −0.501545 0.865132i \(-0.667235\pi\)
0.501545 0.865132i \(-0.332765\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1918.00 1.96315 0.981576 0.191071i \(-0.0611960\pi\)
0.981576 + 0.191071i \(0.0611960\pi\)
\(978\) 0 0
\(979\) 2477.70i 2.53085i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 3744.00 3.77039
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.3.c.d.255.2 2
3.2 odd 2 2304.3.g.k.1279.1 2
4.3 odd 2 inner 256.3.c.d.255.1 2
8.3 odd 2 CM 256.3.c.d.255.2 2
8.5 even 2 inner 256.3.c.d.255.1 2
12.11 even 2 2304.3.g.k.1279.2 2
16.3 odd 4 128.3.d.b.63.2 yes 2
16.5 even 4 128.3.d.b.63.2 yes 2
16.11 odd 4 128.3.d.b.63.1 2
16.13 even 4 128.3.d.b.63.1 2
24.5 odd 2 2304.3.g.k.1279.2 2
24.11 even 2 2304.3.g.k.1279.1 2
48.5 odd 4 1152.3.b.c.703.2 2
48.11 even 4 1152.3.b.c.703.1 2
48.29 odd 4 1152.3.b.c.703.1 2
48.35 even 4 1152.3.b.c.703.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.3.d.b.63.1 2 16.11 odd 4
128.3.d.b.63.1 2 16.13 even 4
128.3.d.b.63.2 yes 2 16.3 odd 4
128.3.d.b.63.2 yes 2 16.5 even 4
256.3.c.d.255.1 2 4.3 odd 2 inner
256.3.c.d.255.1 2 8.5 even 2 inner
256.3.c.d.255.2 2 1.1 even 1 trivial
256.3.c.d.255.2 2 8.3 odd 2 CM
1152.3.b.c.703.1 2 48.11 even 4
1152.3.b.c.703.1 2 48.29 odd 4
1152.3.b.c.703.2 2 48.5 odd 4
1152.3.b.c.703.2 2 48.35 even 4
2304.3.g.k.1279.1 2 3.2 odd 2
2304.3.g.k.1279.1 2 24.11 even 2
2304.3.g.k.1279.2 2 12.11 even 2
2304.3.g.k.1279.2 2 24.5 odd 2