Defining parameters
Level: | \( N \) | \(=\) | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 25410.gb (of order \(132\) and degree \(40\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4235 \) |
Character field: | \(\Q(\zeta_{132})\) | ||
Sturm bound: | \(12672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(25410, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 254080 | 42240 | 211840 |
Cusp forms | 252800 | 42240 | 210560 |
Eisenstein series | 1280 | 0 | 1280 |
Decomposition of \(S_{2}^{\mathrm{new}}(25410, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(25410, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(25410, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4235, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8470, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(12705, [\chi])\)\(^{\oplus 2}\)