Properties

Label 25410.2.gb
Level $25410$
Weight $2$
Character orbit 25410.gb
Rep. character $\chi_{25410}(373,\cdot)$
Character field $\Q(\zeta_{132})$
Dimension $42240$
Sturm bound $12672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25410.gb (of order \(132\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4235 \)
Character field: \(\Q(\zeta_{132})\)
Sturm bound: \(12672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(25410, [\chi])\).

Total New Old
Modular forms 254080 42240 211840
Cusp forms 252800 42240 210560
Eisenstein series 1280 0 1280

Decomposition of \(S_{2}^{\mathrm{new}}(25410, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(25410, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(25410, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4235, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8470, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(12705, [\chi])\)\(^{\oplus 2}\)