Defining parameters
Level: | \( N \) | \(=\) | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 25410.eb (of order \(44\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 605 \) |
Character field: | \(\Q(\zeta_{44})\) | ||
Sturm bound: | \(12672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(25410, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 127040 | 15840 | 111200 |
Cusp forms | 126400 | 15840 | 110560 |
Eisenstein series | 640 | 0 | 640 |
Decomposition of \(S_{2}^{\mathrm{new}}(25410, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(25410, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(25410, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1815, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3630, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4235, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8470, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(12705, [\chi])\)\(^{\oplus 2}\)