Defining parameters
Level: | \( N \) | \(=\) | \( 253 = 11 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 253.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(253))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 17 | 9 |
Cusp forms | 23 | 17 | 6 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(5\) | \(5\) | \(0\) | \(5\) | \(5\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(-\) | \(-\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(8\) | \(6\) | \(2\) | \(7\) | \(6\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(7\) | \(3\) | \(4\) | \(6\) | \(3\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(12\) | \(8\) | \(4\) | \(11\) | \(8\) | \(3\) | \(1\) | \(0\) | \(1\) | ||||
Minus space | \(-\) | \(14\) | \(9\) | \(5\) | \(12\) | \(9\) | \(3\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(253))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | 23 | |||||||
253.2.a.a | $3$ | $2.020$ | 3.3.169.1 | None | \(-1\) | \(-5\) | \(-5\) | \(-3\) | $-$ | $-$ | \(q-\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
253.2.a.b | $3$ | $2.020$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(3\) | \(3\) | \(3\) | $+$ | $-$ | \(q+(1-\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\) | |
253.2.a.c | $5$ | $2.020$ | 5.5.170701.1 | None | \(-4\) | \(-5\) | \(-3\) | \(-3\) | $+$ | $+$ | \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\) | |
253.2.a.d | $6$ | $2.020$ | 6.6.8639957.1 | None | \(3\) | \(7\) | \(3\) | \(-1\) | $-$ | $+$ | \(q+(1-\beta _{1})q^{2}+(1+\beta _{2})q^{3}+(1-\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(253))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(253)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)