Properties

Label 253.2.a
Level $253$
Weight $2$
Character orbit 253.a
Rep. character $\chi_{253}(1,\cdot)$
Character field $\Q$
Dimension $17$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 253.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(253))\).

Total New Old
Modular forms 26 17 9
Cusp forms 23 17 6
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(5\)\(5\)\(0\)\(5\)\(5\)\(0\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(8\)\(6\)\(2\)\(7\)\(6\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(7\)\(3\)\(4\)\(6\)\(3\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(12\)\(8\)\(4\)\(11\)\(8\)\(3\)\(1\)\(0\)\(1\)
Minus space\(-\)\(14\)\(9\)\(5\)\(12\)\(9\)\(3\)\(2\)\(0\)\(2\)

Trace form

\( 17 q + q^{2} + 17 q^{4} - 2 q^{5} + 6 q^{6} - 4 q^{7} - 9 q^{8} + 21 q^{9} - 6 q^{10} + q^{11} - 10 q^{12} - 22 q^{13} - 16 q^{14} + 12 q^{15} + 21 q^{16} - 10 q^{17} - 25 q^{18} - 26 q^{20} - 4 q^{21}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(253))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 23
253.2.a.a 253.a 1.a $3$ $2.020$ 3.3.169.1 None 253.2.a.a \(-1\) \(-5\) \(-5\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\)
253.2.a.b 253.a 1.a $3$ $2.020$ \(\Q(\zeta_{18})^+\) None 253.2.a.b \(3\) \(3\) \(3\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\)
253.2.a.c 253.a 1.a $5$ $2.020$ 5.5.170701.1 None 253.2.a.c \(-4\) \(-5\) \(-3\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
253.2.a.d 253.a 1.a $6$ $2.020$ 6.6.8639957.1 None 253.2.a.d \(3\) \(7\) \(3\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{2})q^{3}+(1-\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(253))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(253)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)