Properties

Label 25230.2.a.w
Level $25230$
Weight $2$
Character orbit 25230.a
Self dual yes
Analytic conductor $201.463$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25230,2,Mod(1,25230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25230.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 25230 = 2 \cdot 3 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25230.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-1,1,1,-1,1,1,1,1,0,-1,4,1,-1,1,-1,1,6,1,-1,0,-7,-1,1,4, -1,1,0,-1,-5,1,0,-1,1,1,6,6,-4,1,6,-1,4,0,1,-7,-1,-1,-6,1,1,4,-4,-1,0, 1,-6,0,4,-1,-8,-5,1,1,4,0,-8,-1,7,1,15,1,7,6,-1,6,0,-4,5,1,1,6,2,-1,-1, 4,0,0,-3,1,4,-7,5,-1,6,-1,5,-6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(201.462564300\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{12} + 4 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 6 q^{19} + q^{20} - q^{21} - 7 q^{23} - q^{24}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.