Properties

Label 252.3.bd
Level $252$
Weight $3$
Character orbit 252.bd
Rep. character $\chi_{252}(229,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.bd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(252, [\chi])\).

Total New Old
Modular forms 204 32 172
Cusp forms 180 32 148
Eisenstein series 24 0 24

Trace form

\( 32 q + q^{7} + 18 q^{9} + 6 q^{11} - 15 q^{13} + 9 q^{15} - 27 q^{17} - 48 q^{21} - 15 q^{23} + 80 q^{25} + 9 q^{27} + 24 q^{29} + 141 q^{35} + 11 q^{37} - 111 q^{39} + 90 q^{41} - 16 q^{43} - 156 q^{45}+ \cdots - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.3.bd.a 252.bd 63.t $32$ $6.867$ None 252.3.p.a \(0\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)