Defining parameters
| Level: | \( N \) | \(=\) | \( 25050 = 2 \cdot 3 \cdot 5^{2} \cdot 167 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 25050.y (of order \(83\) and degree \(82\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 167 \) |
| Character field: | \(\Q(\zeta_{83})\) | ||
| Sturm bound: | \(10080\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(25050, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 415248 | 43624 | 371624 |
| Cusp forms | 411312 | 43624 | 367688 |
| Eisenstein series | 3936 | 0 | 3936 |
Decomposition of \(S_{2}^{\mathrm{new}}(25050, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(25050, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(25050, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(167, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(334, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(501, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(835, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1002, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1670, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2505, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5010, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8350, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(12525, [\chi])\)\(^{\oplus 2}\)