Properties

Label 25050.2.a.z
Level $25050$
Weight $2$
Character orbit 25050.a
Self dual yes
Analytic conductor $200.025$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25050,2,Mod(1,25050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 25050 = 2 \cdot 3 \cdot 5^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1,1,0,1,0,1,1,0,0,1,4,0,0,1,-6,1,0,0,0,0,-4,1,0,4,1,0,6, 0,0,1,0,-6,0,1,4,0,4,0,-10,0,-10,0,0,-4,-8,1,-7,0,-6,4,-12,1,0,0,0,6,6, 0,6,0,0,1,0,0,-10,-6,-4,0,-4,1,-10,4,0,0,0,4,0,0,1,-10,-14,0,0,-10,6,0, -6,0,0,-4,0,-8,0,1,-14,-7,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(200.025257063\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{6} + q^{8} + q^{9} + q^{12} + 4 q^{13} + q^{16} - 6 q^{17} + q^{18} - 4 q^{23} + q^{24} + 4 q^{26} + q^{27} + 6 q^{29} + q^{32} - 6 q^{34} + q^{36} + 4 q^{37}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(167\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.