Properties

Label 25050.2.a.br
Level $25050$
Weight $2$
Character orbit 25050.a
Self dual yes
Analytic conductor $200.025$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25050,2,Mod(1,25050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 25050 = 2 \cdot 3 \cdot 5^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,4,4,0,-4,-1,-4,4,0,0,4,-8,1,0,4,-10,-4,-2,0,-1,0,-2,-4, 0,8,4,-1,14,0,1,-4,0,10,0,4,-5,2,-8,0,14,1,-2,0,0,2,-7,4,13,0,-10,-8,-3, -4,0,1,-2,-14,-5,0,2,-1,-1,4,0,0,7,-10,-2,0,2,-4,-2,5,0,-2,0,8,-10,0,4, -14,-13,-1,0,2,14,0,13,0,-30,-2,1,7,0,-4,-5,-13,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(200.025257063\)
Dimension: \(4\)
Coefficient field: 4.4.2777.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + x + 2 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{6} - q^{7} - 4 q^{8} + 4 q^{9} + 4 q^{12} - 8 q^{13} + q^{14} + 4 q^{16} - 10 q^{17} - 4 q^{18} - 2 q^{19} - q^{21} - 2 q^{23} - 4 q^{24} + 8 q^{26} + 4 q^{27}+ \cdots - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(167\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.