Properties

Label 2499.2.d
Level $2499$
Weight $2$
Character orbit 2499.d
Rep. character $\chi_{2499}(1616,\cdot)$
Character field $\Q$
Dimension $212$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2499 = 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2499.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2499, [\chi])\).

Total New Old
Modular forms 352 212 140
Cusp forms 320 212 108
Eisenstein series 32 0 32

Trace form

\( 212 q - 208 q^{4} + 8 q^{9} + 16 q^{15} + 232 q^{16} - 24 q^{18} + 40 q^{22} + 228 q^{25} - 12 q^{30} - 4 q^{36} + 4 q^{37} + 36 q^{39} + 20 q^{43} - 24 q^{46} + 36 q^{57} - 40 q^{58} + 28 q^{60} - 224 q^{64}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2499, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2499, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2499, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 2}\)