Properties

Label 246.2.o
Level $246$
Weight $2$
Character orbit 246.o
Rep. character $\chi_{246}(11,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $224$
Newform subspaces $2$
Sturm bound $84$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 246 = 2 \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 246.o (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 123 \)
Character field: \(\Q(\zeta_{40})\)
Newform subspaces: \( 2 \)
Sturm bound: \(84\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(246, [\chi])\).

Total New Old
Modular forms 736 224 512
Cusp forms 608 224 384
Eisenstein series 128 0 128

Trace form

\( 224 q - 4 q^{3} - 12 q^{9} + 24 q^{15} + 56 q^{16} - 16 q^{21} + 8 q^{22} + 4 q^{24} + 20 q^{27} - 32 q^{30} - 164 q^{33} - 24 q^{34} - 8 q^{36} + 16 q^{37} - 128 q^{39} - 128 q^{42} - 32 q^{43} - 160 q^{45}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(246, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
246.2.o.a 246.o 123.o $112$ $1.964$ None 246.2.o.a \(0\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{40}]$
246.2.o.b 246.o 123.o $112$ $1.964$ None 246.2.o.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{40}]$

Decomposition of \(S_{2}^{\mathrm{old}}(246, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(246, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(123, [\chi])\)\(^{\oplus 2}\)