Properties

Label 2450.2.h
Level $2450$
Weight $2$
Character orbit 2450.h
Rep. character $\chi_{2450}(491,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $412$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.h (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2450, [\chi])\).

Total New Old
Modular forms 1744 412 1332
Cusp forms 1616 412 1204
Eisenstein series 128 0 128

Trace form

\( 412 q - q^{2} - 4 q^{3} - 103 q^{4} + 9 q^{5} + 2 q^{6} - q^{8} - 109 q^{9} - q^{10} - 8 q^{11} + 6 q^{12} - 14 q^{13} - 16 q^{15} - 103 q^{16} + 4 q^{17} + 28 q^{18} + 14 q^{19} + 4 q^{20} - 8 q^{22}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2450, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2450, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2450, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1225, [\chi])\)\(^{\oplus 2}\)